Soil water repellency (SWR) is a physical phenomenon whereby water cannot penetrate or has difficulty penetrating the soil surface. There are many factors involved in its occurrence, but the main factors controlling its emergence in loess remain unclear. In this work, we have studied numerous physicochemical and biological factors functioning in different dominant vegetations (Pinus tabulaeformis Carr., Robinia pseudoacacia L., and Hippophae rhamnoides L.) in a loess hilly region by gas chromatography–mass spectrometry (GC-MS) and high-throughput sequencing techniques. We observed that more than 75% of the soils under Robinia and Hippophae are categorized as slightly or strongly water repellent, while nearly 50% of the soils under Pinus are categorized as severely to extremely water repellent. The relative concentrations of total free lipids in the soil in the same water-repellency class were Pinus > Robinia > Hippophae, where fatty acids, alkanols, and sterols were positively correlated with SWR, whereas alkanes were not. For the abundance and diversity index of bacterial and fungal communities, the three species ranked in the following order: Robinia ≈ Hippophae > Pinus. Thus, solvent-extractable polar waxes were indicated to be better preserved in water-repellent soils under Pinus due to lower microbial diversity than Robinia and Hippophae. Here, we demonstrate polar waxes to be the principal factor controlling SWR. Moreover, the dominant phyla of fungi varied greatly than those of bacteria under three vegetation types. Correlation analysis showed that the abundance of Actinobacteria in dominant bacteria increased with SWR. Nonmetric multidimensional scaling suggested the fungal community in different water-repellent soils under Pinus to vary more than those under Robinia and Hippophae. The indicator species mainly belonged to Actinobacteria in bacteria and Basidiomycota in fungi at the phylum level; this finding was further supported by the linear discriminant analysis (LDA) effect size (LEfSe). Additionally, GC-MS identified a small amount of ergosterol, a specific biomarker of fungi under Pinus. These pieces of evidence collectively reveal that severe to extreme SWR occurs under Pinus and appears to be the most influenced by fungi and actinomycetes when the topsoil is close to air drying. However, there is a need for further testing on different plant species or land use.
Quantitative assessment of the dynamics of carbon and water use efficiency on the Loess Plateau in the context of complex climate change and its driving mechanisms is important for the improvement of the regional ecological environment and the enhancement of ecological service functions. In order to assess the impact of climate change and human activities on the carbon and water use efficiency of the Loess Plateau, this study investigates the spatial and temporal rates of change in CUE, WUE, and meteorological factors at the image metric scale using one-dimensional linear fit regression, investigates the spatial correlation between CUE and meteorological factors using partial correlation analysis, and quantifies the relative contributions of human activities to CUE and WUE using residual analysis. The following are the study’s conclusions: (1) The CUE and WUE of the Loess Plateau decreased geographically from 2000 to 2020, and both the CUE and WUE of the Loess Plateau exhibited a non-significant declining trend (p > 0.05), with the CUE falling at a rate of 0.001/10a (a: year) and the WUE decreasing at a rate of 0.047/10a (a: year). (2) From 2000 to 2020, the mean values of the CUE and WUE of the Loess Plateau were 0.60 and 1.75, respectively, with a clear spatial difference. (3) CUE was favorably linked with precipitation in 56.51% of the Loess Plateau, dispersed throughout the south-central portion of the Loess Plateau and Inner Mongolia, whereas the biased association with temperature was not statistically significant and often negative. (4) An examination of residuals revealed that human activities affected the trend of CUE and WUE to some degree. Only the WUE residuals of evergreen broadleaf forests exhibited a strong upward trend that was considerably influenced by people. In conclusion, this study used remote sensing image data and meteorological data to systematically analyze the spatial and temporal dynamic patterns of carbon use efficiency and water use efficiency on the Loess Plateau over the past 21 years, as well as the characteristics of their responses to climate change and human activities, thereby providing theoretical guidance for the study of carbon and water cycles in terrestrial ecosystems on the Loess Plateau.
Background and aims It is widely accepted that soil water repellency (SWR) is mainly caused by plant-derived hydrophobic compounds in soils. The relation between these hydrophobic compounds, which are defined as SWR biomarkers, and SWR has been rarely known and the knowledge of their sources remains controversial. We aimed to select key SWR biomarkers predicting SWR and to trace their origin. Methods Topsoils under/around five dominant plant species (DPS) belonging to various plant functional types (PFTs) on the Chinese Loess Plateau were sampled, together with plant samples, i.e., plant leaves and roots. A sequential extraction procedure and hydrolysis approach was applied to obtain three organic fractions: dichloromethane (DCM)/MeOH soluble fraction (D), DCM/MeOH soluble fraction of isopropanol/ammonia solution (IPA/NH3) extract (AS), and DCM/MeOH insoluble fraction of IPA/NH3 extract (AI), which were analyzed by gas chromatography-mass spectrometry. Results The two-way hierarchical clustering analysis revealed a distinct division of soil organic carbon composition under different DPS, and the leaves of evergreen trees offered more cutin than those of other PFTs. In addition, structural equation modeling showed that AS cutin (path coefficient = 0.30) and AI cutin (path coefficient = 0.47) had direct and positive effects on SWR. Moreover, there was a strong link between SWR and the ratio of the two separate compound groups when AS cutin or AI cutin were taken as the numerators. Conclusion After considering the SWR behavior during extraction and the chemical composition of each fraction, we concluded that leaf-derived cutin appears to have the greatest effect.
Soil water infiltration is a key mechanism for meeting plant water demand and groundwater recharge cycles; however, unreasonable land use practices cause reduced infiltration capacity and greater soil erosion. To date, differences in the properties of aeolian sandy soil and Pisha sandstone soil under different utilization methods as well as in soil properties, aggregates, and infiltration among kind of soil types, remain poorly understood. In this work, 54 soil samples of cropland and grassland were selected to identify the unique characteristics of soil infiltration processes under transition from cropland to grassland and contributions of soil properties to soil infiltrability in the Loess Plateau of China. The results showed that converting cropland to grassland could enhance the stable infiltration capacity of shallow soils of aeolian sandy soil and loess soil by 43.6% and 35.7%, respectively. Compared with cropland, the root properties and soil aggregate formation of the three soil types increased during grassland use, with the largest increase in soil organic matter content (32.14%) and total porosities (6.4%). As determined by the ring knife method, the saturated infiltration capacity of Pisha sandstone soil was significantly lower than in aeolian sandy soil and loess soil (p < 0.5). Moreover, its saturated infiltration capacity of cropland was better than grassland. Spearman’s correlation analysis and structural equation modeling (SEM) revealed that soil infiltration capacity appeared to be the most influenced by soil organic matter, and aggregate structure. These results highlight that fifteen years of returning cropland to grassland is not enough to affect the infiltration ability of deep soil (≥20 cm), and this improvement requires longer term maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.