To study the seismic response of a traditional timber structure in China, a full-scale model capturing the main characteristics of a representative ancient Chinese wooden structure in Song Dynasty (960-1279 AD) was established and tested considering three different levels of vertical loads, which is one-story sophisticated timber structure consisting of four columns and Dou-gong sets. A swing column was used to apply the synchronous horizontal force. Tests under the low-cyclic loading were performed considering three levels of vertical load to reveal the hysteretic behavior of the historic buildings. Based on the observed characteristics from restoring forces, the ancient wooden structure appears to have a good ductility despite of its low inherent energy dissipation capability. Based on the test results, the following relationships are established: loads versus displacements with key turning points, the loads at the key points versus the roof weights, the displacements at the key points with the column diameter, and structural stiffness versus ductility. Finally, a limiting value of drift angle for structural design and the equivalent viscous damping and ductility factor for dynamical response analysis are proposed.
In traditional Chinese timber structures, few tie beams were used between columns, and the column base was placed directly on a stone base. In order to study the hysteretic behavior of such structures, a full-scale model was established. e model size was determined according to the requirements of an eighth grade material system specified in the architectural treatise Ying-zao-fa-shi written during the Song Dynasty. In light of the vertical lift and drop of the test model during horizontal reciprocating motions, the horizontal low-cycle reciprocating loading experiments were conducted using a synchronous loading technique. By analyzing the load-displacement hysteresis curves, envelope curves, deformation capacity, energy dissipation, and change in stiffness under different vertical loads, it is found that the timber frame exhibits obvious signs of self-restoring and favorable plastic deformation capacity. As the horizontal displacement increases, the equivalent viscous damping coefficient generally declines first and then increases. At the same time, the stiffness degrades rapidly first and then decreases slowly. Increasing vertical loading will improve the deformation, energy-dissipation capacity, and stiffness of the timber frame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.