Digital in-line holography (DIH) is broadly used to reconstruct 3D shapes of microscopic objects from their 2D holograms. One of the technical challenges in the reconstruction stage is eliminating the twin image originating from the phase-conjugate wavefront. The twin image removal is typically formulated as a non-linear inverse problem since the scattering process involved in generating the hologram is irreversible. Conventional phase recovery methods rely on multiple holographic imaging at different distances from the object plane along with iterative algorithms. Recently, end-to-end deep learning (DL) methods are utilized to reconstruct the object wavefront (as a surrogate for the 3D structure of the object) directly from the singleshot in-line digital hologram. However, massive data pairs are required to train the utilize DL model for an acceptable reconstruction precision. In contrast to typical image processing problems, well-curated datasets for in-line digital holography do not exist. The trained models are also highly influenced by the objects' morphological properties, hence can vary from one application to another. Therefore, data collection can be prohibitively laborious and time-consuming, as a critical drawback of using DL methods for DH. In this paper, we propose a novel DL method that takes advantages of the main characteristic of auto-encoders for blind single-shot hologram reconstruction solely based on the captured sample and without the need for a large dataset of samples with available ground truth to train the model. The simulation results demonstrate the superior performance of the proposed method compared to the state-of-the-art methods used for singleshot hologram reconstruction.
This paper explores deep learning (DL) methods that are used or have the potential to be used for traffic video analysis, emphasising driving safety for both autonomous vehicles and human‐operated vehicles. A typical processing pipeline is presented, which can be used to understand and interpret traffic videos by extracting operational safety metrics and providing general hints and guidelines to improve traffic safety. This processing framework includes several steps, including video enhancement, video stabilisation, semantic and incident segmentation, object detection and classification, trajectory extraction, speed estimation, event analysis, modelling, and anomaly detection. The main goal is to guide traffic analysts to develop their own custom‐built processing frameworks by selecting the best choices for each step and offering new designs for the lacking modules by providing a comparative analysis of the most successful conventional and DL‐based algorithms proposed for each step. Existing open‐source tools and public datasets that can help train DL models are also reviewed. To be more specific, exemplary traffic problems are reviewed and required steps are mentioned for each problem. Besides, connections to the closely related research areas of drivers' cognition evaluation, crowd‐sourcing‐based monitoring systems, edge computing in roadside infrastructures, automated driving systems‐equipped vehicles are investigated, and the missing gaps are highlighted. Finally, commercial implementations of traffic monitoring systems, their future outlook, and open problems and remaining challenges for widespread use of such systems are reviewed.
Driving safety analysis has recently witnessed unprecedented results due to advances in computation frameworks, connected vehicle technology, new generation sensors, and artificial intelligence (AI). Particularly, the recent advances performance of deep learning (DL) methods realized higher levels of safety for autonomous vehicles and empowered volume imagery processing for driving safety analysis. An important application of DL methods is extracting driving safety metrics from traffic imagery. However, the majority of current methods use safety metrics for micro-scale analysis of individual crash incidents or near-crash events, which does not provide insightful guidelines for the overall network-level traffic management. On the other hand, large-scale safety assessment efforts mainly emphasize spatial and temporal distributions of crashes, while not always revealing the safety violations that cause crashes. To bridge these two perspectives, we define a new set of network-level safety metrics for the overall safety assessment of traffic flow by processing imagery taken by roadside infrastructure sensors. An integrative analysis of the safety metrics and crash data reveals the insightful temporal and spatial correlation between the representative network-level safety metrics and the crash frequency. The analysis is performed using two video cameras in the state of Arizona along with a 5-year crash report obtained from the Arizona Department of Transportation. The results confirm that network-level safety metrics can be used by the traffic management teams to equip traffic monitoring systems with advanced AI-based risk analysis, and timely traffic flow control decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.