Background The adenosine-to-inosine (A-to-I) editing in anticodons of tRNAs is critical for wobble base-pairing during translation. This modification is produced via deamination on A34 and catalyzed by the adenosine deaminase acting on tRNA (ADAT) enzyme. Eukaryotic ADATs are heterodimers composed of the catalytic subunit ADAT2 and the structural subunit ADAT3, but their molecular assemblies and catalytic mechanisms are largely unclear. Results Here, we report a 2.8-Å crystal structure of Saccharomyces cerevisiae ADAT2/3 (ScADAT2/3), revealing its heterodimeric assembly and substrate recognition mechanism. While each subunit clearly contains a domain resembling their prokaryotic homolog TadA, suggesting an evolutionary gene duplication event, they also display accessory domains for additional structural or functional purposes. The N-lobe of ScADAT3 exhibits a positively charged region with a potential role in the recognition and binding of tRNA, supported by our biochemical analysis. Interestingly, ScADAT3 employs its C-terminus to block tRNA’s entry into its pseudo-active site and thus inactivates itself for deamination despite the preservation of a zinc-binding site, a mechanism possibly shared only among yeasts. Conclusions Combining the structural with biochemical, bioinformatic, and in vivo functional studies, we propose a stepwise model for the pathway of deamination by ADAT2/3. Our work provides insight into the molecular mechanism of the A-to-I editing by the eukaryotic ADAT heterodimer, especially the role of ADAT3 in catalysis.
Anserine (β-alanyl-N(P)-methyl-l-histidine) is a natural metabolite present in skeletal muscle and the central nervous system of vertebrates and plays important physiological roles in living organisms. The production of anserine is catalyzed by carnosine N-methyltransferases, which transfer a methyl group to carnosine (β-alanyl-l-histidine). However, the structural basis of the substrate recognition for the enzymes is unknown. We present the crystal structure of the putative carnosine N-methyltransferase from yeast named YNL092W in complex with SAH, solved by the single-wavelength anomalous dispersion (SAD) method. The protein contains a typical Rossmann domain and a characteristic N-terminal helical domain. At the cofactor-binding site, SAH forms an extensive interaction network with the enzyme. The individual contribution of each residue to ligand affinity and enzyme activity was assessed by ITC and methyltransferase assays after mutagenesis of the key residues. Additionally, docking studies and activity assays were conducted in order to identify the binding site for carnosine, and a plausible complex model was proposed. Furthermore, we discovered that two disulfide bridges might be functionally important to the enzyme. By comparison to structure- and sequence-similar methyltransferases, we deduce that the enzyme most likely acts on a protein substrate. Our structural analyses shed light on the catalytic mechanism and substrate recognition by YNL092W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.