To address the problem of how to identify the best time to implement reconfiguration for the reconfigurable manufacturing system (RMS), a dynamic complexity-based RMS reconfiguration point decision method is proposed. This method first identifies factors that affect RMS dynamic complexity (including both positive and negative complexity) at the machine tool and manufacturing cell levels. Next, based on information entropy theory, a quantitative model for RMS dynamic complexity is created, which is solved via state probability analysis for processing capability and the processing function. This model is combined with cusp catastrophe theory to establish an RMS reconfiguration decision model. Both positive and negative complexity are control variables for cusp catastrophe. Cusp catastrophe's state condition is used to identify RMS state catastrophe at the final stage of production. This catastrophe point is the RMS reconfiguration point. Finally, the case study result shows that this method can effectively identify the RMS state catastrophe moment so that system reconfiguration is implemented promptly to improve RMS's responsiveness to the market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.