Gestational diabetes mellitus (GDM) is defined as “diagnosed as impaired glucose tolerance for the first time during pregnancy,” which can lead to adverse pregnancy outcomes and produces divergent effects on mothers and newborns. In recent years, with the continuous expansion of obese people, GDM shows an upward trend. The abundant and diverse members of the human gut microbiota exert critical roles in the maintenance of human health. Studies have shown that GDM may be associated with disordered gut microbiota in both mothers and newborns. Taking into account the potential effects on maternal and consequently neonatal health, in this review, we analyzed the available data and discussed the current knowledge about the potential relationship between GDM and intestinal dysbiosis in mothers and newborns. In addition, we also discussed the influencing factors derived from GDM mothers on the gut microbiome of their newborns, including the vertical transmission of microbiota from mothers, the alteration of milk components of GDM mothers, and using of probiotics. Hoping that new insights into the role of the gut microbiota in GDM could lead to the development of integrated strategies to prevent and treat these metabolic disorders.
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Food allergy is a significant public health problem troubling people, and the incidence has been on the rise in the past decade. Emerging evidence suggests an influence of the gut microbiota in susceptibility to food allergies. Epidemiological studies have shown an association between altered exposure to the microbiome and the risk of food allergies. Intervention of the gut microbiota in germ-free mice or supplementation of probiotics can regulate the proliferation of regulatory T (Treg) cells in mice and inhibit food allergy by promoting the expression of receptor-associated orphan γt+ (RORγt+) regulatory T (Treg) cells and inhibiting the proliferation of T helper 2 (Th2) and Th17 cells. This paper reviews the current research progress on how the gut microbiota enhances immune tolerance to prevent food allergy through RORγt+ Treg, hoping to provide some new ideas and effective targets for the prophylaxis of food allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.