In the present study, we used lipopolysaccharide- (LPS-) stimulated H9C2 cardiomyocytes to investigate whether irisin treatment attenuates septic cardiomyopathy via Fundc1-related mitophagy. Fundc1 levels and mitophagy were significantly reduced in LPS-stimulated H9C2 cardiomyocytes but were significantly increased by irisin treatment. Irisin significantly increased ATP production and the activities of mitochondrial complexes I and III in the LPS-stimulated cardiomyocytes. Irisin also improved glucose metabolism and significantly reduced LPS-induced levels of reactive oxygen species by increasing the activities of antioxidant enzymes, glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as levels of reduced glutathione (GSH). TUNEL assays showed that irisin significantly reduced LPS-stimulated cardiomyocyte apoptosis by suppressing the activation of caspase-3 and caspase-9. However, the beneficial effects of irisin on oxidative stress, mitochondrial metabolism, and viability of LPS-stimulated H9C2 cardiomyocytes were abolished by silencing Fundc1. These results demonstrate that irisin abrogates mitochondrial dysfunction, oxidative stress, and apoptosis through Fundc1-related mitophagy in LPS-stimulated H9C2 cardiomyocytes. This suggests irisin is a potentially useful treatment for septic cardiomyopathy, though further investigations are necessary to confirm our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.