Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains.
Sonodynamic therapy (SDT) was developed as a promising noninvasive approach. The present study investigated the antitumor effect of a new sensitizer (sinoporphyrin sodium, referred to as DVDMS) combined with multiple ultrasound treatments on sarcoma 180 both in vitro and in vivo. The combined treatment significantly suppressed cell viability, potentiated apoptosis, and markedly inhibited angiogenesis in vivo. In vivo, the tumor weight inhibition ratio reached 89.82% fifteen days after three sonication treatments plus DVDMS. This effect was stronger than one ultrasound alone (32.56%) and than one round of sonication plus DVDMS (59.33%). DVDMS combined with multiple focused ultrasound treatments initiated tumor tissue destruction, induced cancer cell apoptosis, inhibited tumor angiogenesis, suppressed cancer cell proliferation, and decreased VEGF and PCNA expression levels. Moreover, the treatment did not show obvious signs of side effects or induce a drop in body weight. These results indicated that DVDMS combined with multiple focused ultrasounds may be a promising strategy against solid tumor.
RESCUE BT Trial Investigators E ndovascular treatment has been shown to significantly increase the reperfusion rate and improve the functional outcomes of patients with acute ischemic stroke due to large vessel occlusion. [1][2][3][4] However, endovascular thrombectomy has historically failed to yield successful reperfusion in approximately 30% of patients. 5 Unsuccessful reperfusion likely arises in part from mechanical thrombectomy devices causing traumatic damage to the vascular endothelium with subendothelial matrix exposure, leading to platelet activation, adhesion, and aggregation and potentially resulting in reocclusion and thromboembolic complications. 6,7 Tirofiban, a highly selective nonpeptide platelet glycoprotein IIb/IIIa inhibitor with a relatively short half-life that can reversibly prevent platelet aggregation, has been proven to reduce the risk of thrombotic complications during percutaneous coronary intervention. [8][9][10] Given the benefit of treatment of acute coronary syndromes, a growing number of studies have evaluated tirofiban as an adjunctive treatment in patients with large vessel occlusion ischemic stroke IMPORTANCE Tirofiban is a highly selective nonpeptide antagonist of glycoprotein IIb/IIIa receptor, which reversibly inhibits platelet aggregation. It remains uncertain whether intravenous tirofiban is effective to improve functional outcomes for patients with large vessel occlusion ischemic stroke undergoing endovascular thrombectomy.OBJECTIVE To assess the efficacy and adverse events of intravenous tirofiban before endovascular thrombectomy for acute ischemic stroke secondary to large vessel occlusion.DESIGN, SETTING, AND PARTICIPANTS This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 55 hospitals in China, enrolling 948 patients with stroke and proximal intracranial large vessel occlusion presenting within 24 hours of time last known well.
Rapamycin is a triene macrolide antibiotic produced by Streptomyces hygroscopicus. Besides its wide application as an effective immunosuppressive agent, other important bioactivities have made rapamycin a potential drug lead for novel pharmaceutical development. However, the low titer of rapamycin in the original producer strain limits further industrialization efforts and restricts its use for other applications. Predicated on knowledge of the metabolic pathways related to rapamycin biosynthesis in S. hygroscopicus, we have rationally designed approaches to generate a rapamycin high producer strain of S. hygroscopicus HD-04-S. These have included alleviation of glucose repression, improved tolerance towards lysine and shikimic acid, and auxotrophy of tryptophan and phenylalanine through the application of stepwise UV mutagenesis. The resultant strain produced rapamycin at 450 mg/L in the shake flask scale. These fermentations were further scaled up in 120 and 20,000 L fermentors, respectively, at the pilot plant. Selected fermentation factors including agitation speed, pH, and on-line supplementation were systematically evaluated. A fed-batch strategy was established to maximize rapamycin production. With these efforts, an optimized fermentation process in the larger scale fermentor was developed. The final titer of rapamycin was 812 mg/L in the 120 L fermentor and 783 mg/L in the 20,000 L fermentor. This work highlights a high rapamycin producing strain derived by mutagenesis and subsequent screening, fermentation optimization of which has now made it feasible to produce rapamycin on an industrial scale by fermentation. The strategies developed here should also be applicable to titer improvement of other important microbial natural products on an industrial scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.