Detailed characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) is essential for designing efficient remediation strategies. However, it is difficult to characterize a highly irregular and localized SZA, because traditional drilling investigations provide limited information. With limited data, the estimation accuracy of traditional geostatistical methods is strongly affected by the parameterization of the prior description of the SZA. To improve characterization performance, we parameterized the DNAPL saturation field using a physics‐based approach. We trained a convolutional variational autoencoder (CVAE) using data from multiphase modeling that captures the physics of DNAPL infiltration. The trained CVAE network was used in SZA inversion to obtain an improved prior DNAPL saturation field, instead of the typical stationary prior covariances. We then integrated the CVAE network into an iterative ensemble smoother (ES), to formulate a joint inversion framework. To overcome difficulties from limited/sparse data, we incorporated hydrogeological and geophysical datasets in the proposed inversion framework. To evaluate the performance of our method, we conducted numerical experiments in a hypothetical heterogeneous aquifer with an intricate SZA. The results show that the CVAE was an effective and efficient parameterization method which can capture the DNAPL infiltration patterns better than a Gaussian prior. The improved prior, combined with multisource datasets, can result in better resolution, and overall improved SZA characterization. In contrast to the standard ES method, the proposed framework reconstructed the SZA more accurately. We also demonstrated that DNAPL depletion behavior and dissolved concentration profiles can be predicted accurately using the estimated SZA.
A magnetically separable adsorbent, anhydride-functionalized Fe3O4@SiO2@PEI-NTDA, was successfully constructed for removal of heavy metal ions from aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.