It has been widely acknowledged that anti-Müllerian hormone (AMH) is a golden marker of ovarian reserve. Declined ovarian reserve (DOR), based on experience from reproductive-aged women, refers to both the quantitative and qualitative reduction in oocytes. This view is challenged by a recent study clearly showing that the quality of oocytes is similar in young women undergoing IVF cycles irrespective of the level of AMH. However, it remains elusive whether AMH indicates oocyte quality in women with advanced age (WAA). The aim of this study was to investigate this issue. In the present study, we retrospectively analysed the data generated from a total of 492 IVF/ICSI cycles (from January 2017 to July 2020), and these IVF/ICSI cycles contributed 292 embryo transfer (ET) cycles (from June 2017 to September 2019, data of day 3 ET were included for analysis) in our reproductive centre. Based on the level of AMH, all patients (= > 37 years old) were divided into 2 groups: the AMH high (H) group and the AMH low (L) group. The parameters of in vitro embryo development and clinical outcomes were compared between the two groups. The results showed that women in the L group experienced severe DOR, as demonstrated by a higher rate of primary diagnosis of DOR, lower antral follicle count (AFC), higher level of basal follicle stimulating hormone (FSH) and cancelation cycles, lower level of E2 production on the day of surge, and fewer oocytes and MII oocytes retrieved. Compared with women in the H group, women in the L group showed slightly reduced top embryo formation rate but a similar normal fertilization rate and blastocyst formation rate. More importantly, we found that the rates of implantation, spontaneous miscarriage and livebirth were similar between the two groups, while the pregnancy rate was significantly reduced in the L group compared with the H group. Further analysis indicated that the higher pregnancy rate of women in the H group may be due to more top embryos transferred per cycle. Due to an extremely low implantation potential for transfer of non-top embryos from WAA (= > 37 years old) in our reproductive centre, we assumed that all the embryos that implanted may result from the transfer of top embryos. Based on this observation, we found that the ratio of embryos that successfully implanted or eventually led to a livebirth to top embryos transferred was similar between the H and the L groups. Furthermore, women with clinical pregnancy or livebirth in the H or L group did not show a higher level of serum AMH but were younger than women with non-pregnancy or non-livebirth. Taken together, this study showed that AMH had a limited role in predicting in vitro embryo developmental potential and had no role in predicting the in vivo embryo developmental potential, suggesting that in WAA, AMH should not be used as a marker of oocyte quality. This study supports the view that the accumulation of top embryos via multiple oocyte retrieval times is a good strategy for the treatment of WAA.
Sperm preparation in iVf cycles using density gradient centrifugation (DGc) in combination with swim-up (SU) has been widely adopted in reproductive centres worldwide. it is a fact that the sperm recovery rate following one DGc from poor semen samples (showing liquefaction defects/containing too many unresolvable clots or rare sperm) is relatively low. our results showed that double DGc (DDGC) is effective at increasing the sperm recovery rate from poor semen samples. However, DDGC may increase the mechanical stress of sperm, thereby potentially impairing embryo development. Therefore, it is necessary to evaluate the safety of using sperm prepared by DDGC/SU for IVF cycles. In this study, we retrospectively analysed the data generated from a total of 529 IVF cycles (from June 2017 to June 2018), and these IVF cycles contributed 622 transfer cycles (from June 2017 to December 2018) in Changzhou Maternal and Child Health Care Hospital. Of them, 306 IVF cycles and the related 355 transfer cycles (normal semen samples prepared by DGC/SU) were set as the normal group, while 223 IVF cycles and the related 267 transfer cycles (poor semen prepared by DDGC/SU) were set as the observation group. The main outcome measures, including the normal fertilization rate, top D3 embryo formation rate, blastocyte formation rate, clinical pregnancy rate and live birth rate, birth weight and duration of pregnancy, were compared between the two groups. Compared to semen in the DGC/SU group, semen in the DDGC/SU group showed increased levels of the DNA fragmentation index (DFI) and reduced sperm concentration, percentage of progressive motility (PR) sperm, and percentage of normal morphology sperm. The indicators reflecting in vitro embryo development and clinical outcomes were similar in the DGC/SU group and DDGC/SU group, including the normal fertilization rate, top D3 embryo formation rate, blastocyte formation rate, pregnancy rate, implantation rate, spontaneous abortion rate, live birth rate, birth weight and duration of pregnancy. Furthermore, we found that the 1PN zygote formation rate was significantly lower in the DDGC/SU group than that in the DGC/SU group. We concluded that oocytes fertilized by sperm from poor semen samples separated by DDGC/SU achieved the same outcomes as oocytes fertilized by sperm from normal semen separated by DGC/SU, suggesting that DDGC/SU is an effective and safe method of sperm enrichment for poor semen samples in IVF. The main contribution of the present study is the verification of the effectiveness of DDGC/SU in improving sperm recovery from poor semen samples and the safety of using sperm prepared by DDGc/ SU for iVf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.