No abstract
Maintaining active growth and effective immune responses is often costly for a living organism to survive. Fine-tuning the shared cross-regulators is crucial for metazoans and plants to make a trade-off between growth and immunity. The Arabidopsis regulatory receptor-like kinase BAK1 complexes with the receptor kinases FLS2 in bacterial flagellin-triggered immunity and BRI1 in brassinosteroid (BR)-mediated growth. BR homeostasis and signaling unidirectionally modulate FLS2-mediated immune responses at multiple levels. We have shown previously that BIK1, a receptorlike cytoplasmic kinase, is directly phosphorylated by BAK1 and associates with FLS2/BAK1 complex in transducing flagellin signaling. In contrast to its positive role in plant immunity, we report here that BIK1 acts as a negative regulator in BR signaling. The bik1 mutant displays various BR hypersensitive phenotypes accompanied with increased accumulation of de-phosphorylated BES1 proteins and transcriptional regulation of BZR1 and BES1 target genes. BIK1 associates with BRI1, and is released from BRI1 receptor upon BR treatment, which is reminiscent of FLS2-BIK1 complex dynamics in flagellin signaling. The ligand-induced release of BIK1 from receptor complexes is associated with BIK1 phosphorylation. However, in contrast to BAK1-dependent FLS2-BIK1 dissociation, BAK1 is dispensable for BRI1-BIK1 dissociation. Unlike FLS2 signaling which depends on BAK1 to phosphorylate BIK1, BRI1 directly phosphorylates BIK1 to transduce BR signaling. Thus, BIK1 relays the signaling in plant immunity and BR-mediated growth via distinct phosphorylation by BAK1 and BRI1, respectively. Our studies indicate that BIK1 mediates inverse functions in plant immunity and development via dynamic association with specific receptor complexes and differential phosphorylation events.brassinosteroid insensitive 1 | BRI1-associated receptor kinase | flagellin sensing 2 | botrytis-induced kinase 1 | bri1-Ems-Suppressor 1 M etazoans and plants have evolved complex mechanisms to cope with the constant challenges of environmental stresses while maintaining their growth and development. Being sessile and lacking a sophisticated adaptive immune system, plants possess a large number of receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) that modulate growth, development, and innate immunity (1). RLKs sense different extrinsic and intrinsic cues through the extracellular domain and mediate diverse signaling events via the kinase domain. Arabidopsis Brassinosteroid Insensitive 1 (BRI1), a leucine-rich repeat (LRR)-receptor kinase perceives the polyhydroxylated growth hormones brassinosteroids (BR) to regulate plant growth and development (2). Despite structural similarity with BRI1, Flagellin Sensing 2 (FLS2) and EFTu Receptor (EFR) recognize microbe-associated molecular pattern (MAMP) flagellin and elongation factor Tu (EF-Tu), respectively, and initiate innate immune signaling to defend against pathogen attacks (3, 4). Apparently, signaling specificity is achieved by s...
Plants largely rely on plasma membrane (PM)-resident receptor-like kinases (RLKs) to sense extracellular and intracellular stimuli and coordinate cell differentiation, growth, and immunity. Several RLKs have been shown to undergo internalization through the endocytic pathway with a poorly understood mechanism. Here, we show that endocytosis and protein abundance of the brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), are regulated by plant U-box (PUB) E3 ubiquitin ligase PUB12- and PUB13-mediated ubiquitination. BR perception promotes BRI1 ubiquitination and association with PUB12 and PUB13 through phosphorylation at serine 344 residue. Loss of PUB12 and PUB13 results in reduced BRI1 ubiquitination and internalization accompanied with a prolonged BRI1 PM-residence time, indicating that ubiquitination of BRI1 by PUB12 and PUB13 is a key step in BRI1 endocytosis. Our studies provide a molecular link between BRI1 ubiquitination and internalization and reveal a unique mechanism of E3 ligase-substrate association regulated by phosphorylation.
Recognition of microbe-associated molecular patterns (MAMPs) via plasma membrane (PM)-resident pattern recognition receptors (PRRs) triggers the first line of inducible defense against invading pathogens 1 – 3 . Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants 4 . The mechanisms underlying PM-tethered RLCK activation remain elusive. We report here that, upon MAMP perception, RLCK BOTRYTIS -INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)-BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent BIK1 release from the FLS2-BAK1 complex and immune signaling activation. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics distinct from those of PRR FLS2. Our study reveals the intertwined regulation of PRR-RLCK complex activation by protein phosphorylation and ubiquitination, and elucidates that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signaling.
SUMMARY Plants employ cell-surface pattern recognition receptors (PRRs) to detect pathogens. Although phytohormones produced during PRR signaling play an essential role in innate immunity, a direct link between PRR activation and hormone regulation is unknown. EFR is a PRR that recognizes bacterial EF-Tu and activates immune signaling. Here we report that EFR regulates the phytohormone jasmonic acid (JA) through direct phosphorylation of a receptor-like cytoplasmic kinase, BIK1. The BIK1 structure revealed that the EFR-phosphorylated sites reside on a uniquely extended loop away from the BIK1 kinase core domain. Phosphomimetic mutations of these sites resulted in increased phytohormones and enhanced resistance to bacterial infections. In addition to its documented plasma membrane localization, BIK1 also localizes to the nucleus and interacts directly with WRKY transcription factors involved in the JA and salicylic acid (SA) regulation. These findings demonstrate the mechanistic basis of signal transduction from PRR to phytohormones, mediated through a PRR-BIK1-WRKY axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.