In this study, we investigated the effect of dietary methionine restriction (MR) on the antioxidant function and inflammatory responses in lipopolysaccharide (LPS)-challenged broilers reared at high stocking density. A total of 504 one-day-old male Arbor Acre broiler chickens were randomly divided into four treatments: 1) CON group, broilers fed a basal diet; 2) LPS group, LPS-challenged broilers fed a basal diet; 3) MR1 group, LPS-challenged broilers fed a methionine-restricted diet (0.3% methionine); and 4) MR2 group, LPS-challenged broilers fed a methionine-restricted diet (0.4% methionine). LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 17, 19, and 21 days of age, whereas the CON group was injected with sterile saline. The results showed that: LPS significantly increased the liver histopathological score (p < 0.05); LPS significantly decreased the serum total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity at 3 h after injection (p < 0.05); the LPS group had a higher content of Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF)-α, but a lower content of IL-10 than the CON group in serum (p < 0.05). Compared with the LPS group, the MR1 diet increased catalase (CAT), SOD, and T-AOC, and the MR2 diet increased SOD and T-AOC at 3 h after injection in serum (p < 0.05). Only MR2 group displayed a significantly decreased liver histopathological score (p < 0.05) at 3 h, while MR1 and MR2 groups did so at 8 h. Both MR diets significantly decreased serum LPS, CORT, IL-1β, IL-6, and TNF-α contents, but increased IL-10 content (p < 0.05). Moreover, the MR1 group displayed significantly increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2), CAT, and GSH-Px at 3 h; the MR2 group had a higher expression of Kelch-like ECH-associated protein 1 (Keap1), SOD, and GSH-Px at 8 h (p < 0.05). In summary, MR can improve antioxidant capacity, immunological stress, and liver health in LPS-challenged broilers. The MR1 and MR2 groups experienced similar effects on relieving stress; however, MR1 alleviated oxidative stress more rapidly. It is suggested that precise regulation of methionine levels in poultry with stress may improve the immunity of broilers, reduce feed production costs, and increase production efficiency in the poultry industry.
The spectral/hp element method is a high fidelity method that has good numerical dispersion-diffusion characteristics and is flexible and applicable to quasi-three-dimensional aerodynamic problems with complex geometric configurations in the streamline direction and the pitch direction. This paper uses this method to directly solve the incompressible Navier-Stokes equations, and analyzes the aerodynamic performance of the T106A low-pressure turbine cascade at low Reynolds number. Two different conditions, i.e. uniform inlet flow and cylinder’s wake flow, are adopted and their basic characteristics of flow separation and transition are quantitatively analyzed and compared, by observing the distribution of cascade wall surface pressure and friction coefficient, the distribution of wake profile pressure loss and the evolution characteristics of boundary layer flow structure. The numerical results show that the spectral/hp element method can accurately predict the flow separation and transition performance of low-pressure turbine cascades, which implies that it can be used as a high-fidelity simulation and calculation tool for the optimal design of this type of cascade. It is also found that cylinder’s wake can effectively inhibit boundary layer separation of the T106A LPT blade and improve aerodynamic performance and efficiency of it.
This paper numerically investigates the aerodynamic performance of the T106A low-pressure turbine based with different inflow conditions at moderate Reynolds number by using high performance computing based on high order unstructured methods. Two different inflow conditions respectively of uniform and disturbed are considered, while for the latter a small circular cylinder is placed upstream of the cascade to generate wake turbulence as a long-standing disturbance. A high order Fourier-spectral/hp element method is employed to solve the flow dynamics in the cascade of high complex geometries. Flow transition characteristics are quantified in terms of the distribution of cascade wall surface pressure and friction coefficient, the distribution of wake profile pressure loss and the evolution characteristics of boundary layer flow structures as well. The numerical results show that the current numerical simulations accurately predict the flow transition performance of low-pressure turbine cascades and capture the effects of wake-generated disturbance on the cascade, which is shown to effectively modify the flow transition performance as compared with the uniform inflow case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.