This study was conducted to investigate impacts of dietary protein levels on gut bacterial community and gut barrier. The intestinal microbiota of finishing pigs, fed with 16%, 13% and 10% crude protein (CP) in diets, respectively, were investigated using Illumina MiSeq sequencing. The ileal bacterial richness tended to decrease when the dietary protein concentration reduced from 16% to 10%. The proportion of Clostridium_sensu_stricto_1 in ileum significantly decreased, whereas Escherichia-Shigella increased with reduction of protein concentration. In colon, the proportion of Clostridium_sensu_stricto_1 and Turicibacter increased, while the proportion of RC9_gut_group significantly decreased with the dietary protein reduction. Notably, the proportion of Peptostreptococcaceae was higher in both ileum and colon of 13% CP group. As for metabolites, the intestinal concentrations of SCFAs and biogenic amines decreased with the dietary protein reduction. The 10% CP dietary treatment damaged ileal mucosal morphology, and decreased the expression of biomarks of intestinal cells (Lgr5 and Bmi1), whereas the expression of tight junction proteins (occludin and claudin) in 13% CP group were higher than the other two groups. In conclusion, moderate dietary protein restriction (13% CP) could alter the bacterial community and metabolites, promote colonization of beneficial bacteria in both ileum and colon, and improve gut barrier function.
Appropriate protein concentration is essential for animal at certain stage. This study evaluated the effects of different percentages of dietary protein restriction on intestinal health of growing pigs. Eighteen barrows were randomly assigned to a normal (18%), low (15%), and extremely low (12%) dietary protein concentration group for 30 days. Intestinal morphology and permeability, bacterial communities, expressions, and distributions of intestinal tight junction proteins, expressions of biomarkers of intestinal stem cells (ISCs) and chymous bacterial metabolites in ileum and colon were detected. The richness and diversity of bacterial community analysis with Chao and Shannon index were highest in the ileum of the 15% crude protein (CP) group. Ileal abundances of Streptococcaceae and Enterobacteriaceae decreased respectively, while beneficial Lactobacillaceae, Clostridiaceae_1, Actinomycetaceae, and Micrococcaceae increased their proportions with a protein reduction of 3 percentage points. Colonic abundances of Ruminococcaceae, Christensenellaceae, Clostridiaceae_1, Spirochaetaceae, and Bacterodales_S24-7_group declined respectively, while proportions of Lachnospiraceae, Prevotellaceae, and Veillonellaceae increased with dietary protein reduction. Concentrations of most bacterial metabolites decreased with decreasing dietary protein concentration. Ileal barrier function reflected by expressions of tight junction proteins (occludin, zo-3, claudin-3, and claudin-7) did not show significant decrease in the 15% CP group while sharply reduced in the 12% CP group compared to that in the 18% CP group. And in the 15% CP group, ileal distribution of claudin-3 mainly located in the cell membrane with complete morphological structure. In low-protein treatments, developments of intestinal villi and crypts were insufficient. The intestinal permeability reflected by serous lipopolysaccharide (LPS) kept stable in the 15% CP group while increased significantly in the 12% CP group. The expression of ISCs marked by Lgr5 slightly increased in ileum of the 15% CP group. Colonic expressions of tight junction proteins declined in extremely low protein levels. In conclusion, moderate protein restriction (15% CP) can optimize the ileal microbiota structure via strengthening beneficial microbial populations and suppressing harmful bacterial growth and altering the function of ileal tight junction proteins as well as epithelial cell proliferation.
Clostridium butyricum is known as a butyrate producer and a regulator of gut health, but whether it exerts a beneficial effect as a dietary supplement via modulating the intestinal microbiota remains elusive. This study investigated the impact of C. butyricum on the fecal microbiota composition and their metabolites 14 and 28 days after weaning with 10 g/kg dietary supplementation of C. butyricum. Dynamic changes of microbial compositions showed dramatically increasing Selenomonadales and decreasing Clostridiales on days 14 and 28. Within Selenomonadales, Megasphaera became the main responder by increasing from 3.79 to 11.31%. Following the prevalence of some acetate producers ( Magasphaera) and utilizers ( Eubacterium_hallii) at the genus level and even with a significant decrease in fecal acetate on day 28, the present data suggested that C. butyricum influenced microbial metabolism by optimizing the structure of microbiota and enhancing acetate production and utilization for butyrate production.
Abstract2D van der Waals (vdW) heterostructures are receiving increasing research attention due to the theoretically amazing properties and unprecedented application potential. However, the as‐synthesized heterostructures are generally underperforming due to the weak interlayer coupling, which inspires the researchers to find ways to modulate the interlayer coupling and properties, realizing the tailored performance for actual applications. There have been a lot of publications regarding the controllable regulation of the structures and properties of 2D vdW heterostructures in the past few years, while a review work summarizing the current advances is not yet available, though it is significant. This paper conducts a state‐of‐the‐art review regarding the current research progress of performance modulation of vdW heterostructures by different techniques. First, the general synthesis methods of vdW heterostructures are summarized. Then, different performance modulation techniques, that is, mechanical‐based, external fields‐assisted, and particle beam irradiation‐based methods, are discussed and compared in detail. Some of the newly proposed concepts are described. Thereafter, applications of vdW heterostructures with tailored properties are reviewed for the application prospects of the topic around this area. Moreover, the future research challenges and prospects are discussed, aiming at triggering more research interest and device applications around this topic.
This paper reviews the research progress of conductive hydrogel 3D printing for flexible electronics, with emphasis on 3D printing methods, classification and materials synthesis methods, and application fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.