Remote sensing (RS) image classification plays an important role in the earth observation technology using RS data, having been widely exploited in both military and civil fields. However, due to the characteristics of RS data such as high dimensionality and relatively small amounts of labeled samples available, performing RS image classification faces great scientific and practical challenges. In recent years, as new deep learning (DL) techniques emerge, approaches to RS image classification with DL have achieved significant breakthroughs, offering novel opportunities for the research and development of RS image classification. In this paper, a brief overview of typical DL models is presented first. This is followed by a systematic review of pixel‐wise and scene‐wise RS image classification approaches that are based on the use of DL. A comparative analysis regarding the performances of typical DL‐based RS methods is also provided. Finally, the challenges and potential directions for further research are discussed.
This article is categorized under:
Application Areas > Science and Technology
Technologies > Classification
With the increasing availability of low-cost, commercially available unmanned aerial vehicles (UAVs), visual tracking using UAVs has become more and more important due to its many new applications, including automatic navigation, obstacle avoidance, traffic monitoring, search and rescue, etc. However, real-world aerial tracking poses many challenges due to platform motion and image instability, such as aspect ratio change, viewpoint change, fast motion, scale variation and so on. In this paper, an efficient object tracking method for UAV videos is proposed to tackle these challenges. We construct the fused features to capture the gradient information and color characteristics simultaneously. Furthermore, cellular automata is introduced to update the appearance template of target accurately and sparsely. In particular, a high confidence model updating strategy is developed according to the stability function. Systematic comparative evaluations performed on the popular UAV123 dataset show the efficiency of the proposed approach.
Discriminative correlation filter (DCF) has contributed tremendously to address the problem of object tracking benefitting from its high computational efficiency. However, it has suffered from performance degradation in unmanned aerial vehicle (UAV) tracking. This article presents a novel semanticaware real-time correlation tracking framework (SARCT) for UAV videos to enhance the performance of DCF trackers without incurring excessive computing cost. Specifically, SARCT first constructs an additional detection module to generate ROI proposals and to filter any response regarding the target irrelevant area. Then, a novel semantic segmentation module based on semantic template generation and semantic coefficient prediction is further introduced to capture semantic information, which can provide precise ROI mask, thereby effectively suppressing background interference in the ROI proposals. By sharing features and specific network layers for object detection and semantic segmentation, SARCT reduces parameter redundancy to attain sufficient speed for real-time applications. Systematic experiments are conducted on three typical aerial datasets in order to evaluate the performance of the proposed SARCT. The results demonstrate that SARCT is able to improve the accuracy of conventional DCF-based trackers significantly, outperforming state-of-the-art deep trackers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.