This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.
From the early 90s, online education has been continually reshaping the notion of open learning. Massive Open Online Courses (MOOCs) have generated a paradigm shift in online education by presenting free high-quality education to anyone, anywhere with Internet access. Since 2012, MOOCs got attention of the universities, media and entrepreneurs. These online courses may change the world by 2022. This paper discusses major elements of MOOCs that can influence teaching and learning in engineering. It also explores the promise of online education in improving standard in-class engineering education.
As the foundation of model control, robot dynamics is crucial. However, a robot is a complex multi-input–multi-output system. System noise seriously affects parameter identification results, thereby inevitably requiring us to conduct signal processing to extract useful signals from chaotic noise. In this research, the dynamic parameters were identified on the basis of the proposed multi-criteria embedded optimization design method, to obtain the optimal excitation signal and then use maximum likelihood estimation for parameter identification. Considering the movement coupling characteristics of the multi-axis, experiments were based on a two degrees-of-freedom manipulator with joint torque sensors. Simulation and experimental results showed that the proposed method can reasonably resolve the problem of mutual opposition within a single criterion and improve the identification robustness in comparison with other optimization criteria. The mean relative standard deviation was 0.04 and 0.3 lower in the identified parameters than in F1 and F3, respectively, thus signifying that noise is effectively alleviated. In addition, validation experimental curves were close to the estimation model, and the average of root mean square (RMS) is 0.038, thereby confirming the accuracy of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.