Abstract:The CT uroscan consists of three to four time-spaced acquisitions of the same patient. After registration of these acquisitions, the data forms a volume in which each voxel contains a vector of elements corresponding to the information of the CT uroscan acquisitions. In this paper we will present a segmentation tool in order to differentiate the anatomical structures within the vectorial volume. Because of the partial volume effect (PVE), soft segmentation is better suited because it allows regions or classes to overlap. Gaussian mixture model is often used in statistical classifier to realize soft segmentation problems by getting classes probability distributions. But this model relies only on the intensity distributions, which will lead a misclassification on the boundaries and on inhomogeneous regions with noise. In order to solve this problem, a neighborhood weighted Gaussian mixture model is proposed in this paper. Expectation Maximization algorithm is used as optimization method. The experiments demonstrate that the proposed method can get a better classification result and is less affected by the noise.
The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.