PURPOSE-To investigate prospectively the feasibility of using optical tomography with ultrasonographic (US) localization to differentiate malignant from benign breast masses and to compare optical tomography with color Doppler US. MATERIALS AND METHODS-The study was approved by the local internal review board committee and by the Human Subjects Research Review Board of Army Medical Research and Materiel Command. Signed informed consent was obtained, and the study was HIPAA compliant. Between May 2003 and March 2004, 65 consecutive women (mean age, 51 years; age range, 24-80 years) with 81 breast lesions underwent US-guided biopsy and were scanned with a combined imager. The hand-held probe, which consisted of a centrally located US transducer surrounded by nearinfrared sensors, was used to simultaneously acquire coregistered US images and optical data. The lesion location obtained at US was used to guide optical imaging reconstruction. Light absorption was measured at two wavelengths. From these measurements, tumor angiogenesis was assessed on the basis of calculated total hemoglobin concentration. A Student t distribution was used to calculate the statistical significance of mean maximum and mean average hemoglobin concentrations obtained in malignant and benign lesion groups, and P < .001 was considered to indicate a statistically significant difference.RESULTS-Biopsy results revealed eight early stage invasive carcinomas (malignant group) and 73 benign lesions (benign group). The mean maximum and mean average hemoglobin concentrations in the malignant group were 122 μmol/L ± 26.8 (± standard deviation) and 88 μmol/L ± 24.5, respectively. The mean maximum and mean average hemoglobin concentrations in the benign group were 55 μmol/L ± 24.8 and 38 μmol/L ± 17.4, respectively. Both the maximum and average total hemoglobin concentrations were significantly higher in the malignant group compared with the benign group (P < .001). When a maximum hemoglobin concentration of 95 μmol/L was used as the threshold value, the sensitivity, specificity, positive predictive value, and negative predictive value of optical tomography were 100%, 96%, 73%, and 100%, respectively, and the sensitivity, specificity, positive predictive value, and negative predictive value of color Doppler US were 63%, 69%, 19%, and 94%, respectively. Tumor angiogenesis is known to be critical for the autonomous growth and spread of breast cancers (7,8). Tumor angiogenesis is a complex process that involves both the incorporation of existing host blood vessels into the tumor and the creation of tumor microvessels. This process is moderated by means of tumor angiogenesis factors (9). In principle, the altered hemodynamics that accompany tumor angiogenesis provide a basis for discriminating between malignant and benign breast masses at color Doppler US (10). The diagnostic value of color Doppler US in obviating biopsy, however, has been limited (11,12).Optical tomography, a new technique that employs diffused light in the near-infrared spectrum...
The angiogenesis (tHb) contrast imaged by using the NIR technique with US holds promise as an adjunct to mammography and US for distinguishing early-stage invasive breast cancers from benign lesions.
The purposes of this study were 1) to investigate the feasibility of using optical tomography in the near-infrared (NIR) spectrum combined with ultrasound (US) localization (NIR/US) in monitoring tumor vascular changes and assessing tumor pathological response during chemotherapy and 2) to compare the accuracy of NIR/US with magnetic resonance imaging (MRI) in predicting residual cancer after neoadjuvant chemotherapy. Eleven female patients were studied during treatments with a combined imager consisting of a commercially available US system coupled to an NIR imager. Contrast-enhanced MRI was performed before treatment and surgery. Tumor vascular content was assessed based on total hemoglobin concentration and volume obtained from NIR data. A percentage blood volume index (%BVI) was calculated as the percentage ratio of the product of total hemoglobin concentration and volume normalized to pretreatment values. At treatment completion, pathologic assessment revealed three response groups: complete or near-complete responders (A), partial responders (B), and nonresponders (C). The mean %BVIs of groups A, B, and C at the treatment completion were 29.1 +/- 6.9%, 46.3 +/- 3.7%, and 86.8 +/- 30.1%, respectively (differences statistically significant, P < .04). At the end of cycle 2, the %BVI of group A was noticeably lower than that of the partial (P = .091) and nonresponder groups (P = .075). Both NIR/US and MRI were equally effective in distinguishing different response groups in this pilot study. Our initial findings indicate that NIR/US using %BVI can be used during chemotherapy to repeatedly monitor tumor vascular changes. NIR/US also may evaluate pathologic response during treatment allowing for tailoring therapies to response.
We report a frequency domain optical tomography system utilizing three RF modulation frequencies, which are optimized for probing breast lesions of different size located at different depths. A real-time co-registered ultrasound scanner is used to provide on-site estimation of lesion size and location. Based on the lesion information, an optimal light modulation frequency can be selected, which may yield more accurate estimates of lesion angiogenesis and hypoxia. Phantom experiments have demonstrated that a high modulation frequency, such as 350Mhz, is preferable for probing small lesions closer to the surface while a low modulation frequency, such as 50Mhz, is desirable for imaging deeper and larger lesions. A clinical example of a large invasive carcinoma is presented to demonstrate the application of this novel technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.