Air quality is changing due to the influence of industry, agriculture, people’s living activities and other factors. Traditional machine learning methods generally do not consider the time series of the data itself and cannot handle long-range dependencies, thus ignoring information relevant to the predicted items and affecting the accuracy of air quality predictions. Therefore, an attention mechanism is introduced based on the long short term memory network model (LSTM), which attenuates unimportant information by controlling the proportion of the weight distribution. Finally, an integrated lightGBM+LSTM-attention model was constructed based on the light gradient boosting machine (lightGBM), and the prediction results were compared with those of 11 models. The experimental results show that the integrated model constructed in this article performs better, with the coefficient of determination (R2) of prediction accuracy reaching 0.969 and the root mean square error (RMSE) improving by 5.09, 4.94, 4.85 and 4.0 respectively compared to other models, verifying the superiority of the model.
Federated learning enables multiple nodes to perform local computations and collaborate to complete machine learning tasks without centralizing private data of nodes. However, the frequent model gradients upload/download operations required by the framework result in high communication costs, which have become the main bottleneck for federated learning as deep models scale up, hindering its performance. In this paper, we propose a two-layer accumulated quantized compression algorithm (TLAQC) that effectively reduces the communication cost of federated learning. TLAQC achieves this by reducing both the cost of individual communication and the number of global communication rounds. TLAQC introduces a revised quantization method called RQSGD, which employs zero-value correction to mitigate ineffective quantization phenomena and minimize average quantization errors. Additionally, TLAQC reduces the frequency of gradient information uploads through an adaptive threshold and parameter self-inspection mechanism, further reducing communication costs. It also accumulates quantization errors and retained weight deltas to compensate for gradient knowledge loss. Through quantization correction and two-layer accumulation, TLAQC significantly reduces precision loss caused by communication compression. Experimental results demonstrate that RQSGD achieves an incidence of ineffective quantization as low as 0.003% and reduces the average quantization error to 1.6 × $${10}^{-5}$$ 10 - 5 . Compared to full-precision FedAVG, TLAQC compresses uploaded traffic to only 6.73% while increasing accuracy by 1.25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.