The bone morphogenetic proteins (BMPs) profoundly affect embryonic development, differentiation and disease. BMP signaling is suppressed by cysteine-rich domain proteins, such as chordin, that sequester ligands from the BMP receptor. We describe a novel protein, KCP, with 18 cysteine-rich domains. Unlike chordin, KCP enhances BMP signaling in a paracrine manner. Smad1-dependent transcription and phosphorylated Smad1 (P-Smad1) levels are increased, as KCP binds to BMP7 and enhances binding to the type I receptor. In vivo, Kcp(-/-) mice are viable and fertile. Because BMPs have a pivotal role in renal disease, we examined the phenotype of Kcp(-/-) mice in two different models of renal injury. Kcp(-/-) animals show reduced levels of P-Smad1, are more susceptible to developing renal interstitial fibrosis, are more sensitive to tubular injury and show substantial pathology after recovery. The data indicate an important role for KCP in attenuating the pathology of renal fibrotic disease.
Photodynamic therapy (PDT) is an effective, noninvasive therapeutic modality against local tumors that are accessible to the source of light. However, it remains challenging to apply PDT for the treatment of disseminated, metastatic cancer. On the other hand, cancer immunotherapy offers a promising approach for generating systemic antitumor immune responses against disseminated cancer. Here we report a multifunctional nanomaterial system for the combination of PDT and personalized cancer immunotherapy and demonstrate their potency against local as well as disseminated tumors. Specifically, we have synthesized uniform and biodegradable mesoporous silica nanoparticles (bMSN) with an average size of ~80 nm and large pore size of 5-10 nm for theranostic positron emission tomography (PET)-guided PDT and neoantigen-based cancer vaccination. Multiple neoantigen peptides, CpG oligodeoxynucleotide adjuvant, and photosensitizer chlorin e6 were coloaded into a bMSN nanoplatform, and PET imaging revealed effective accumulation of bMSN in tumors (up to 9.0% ID/g) after intravenous administration. Subsequent PDT with laser irradiation recruited dendritic cells to PDT-treated tumor sites and elicited neoantigen-specific, tumor-infiltrating cytotoxic T-cell lymphocytes. Using multiple murine models of bilateral tumors, we demonstrate strong antitumor efficacy of PDTimmunotherapy against locally treated tumors as well as distant, untreated tumors. Our findings *
therapy combined with chemotherapy triggers immunogenic cell death and antitumor immune responses, resulting in elimination of local, as well as untreated, distant tumors.
Smart windows have been paid much attention in recent years since they can save more energy in comparison with ordinary counterparts. However, exterior heating or electric system is still required to stimulate the color/transparency responses for current smart windows, which increases the complexity of device's structure and still consumes energy. Thus, sunlight‐responsive smart windows in building are particularly appealing for saving energy but seldom reported. Herein, we propose a facile and low‐cost method to construct reversible color/transparency switching materials by integrating the unique photothermal conversion feature of noble metal nanoparticles with thermochromic compounds. The switching behavior of thermochromic materials is not triggered by traditional exterior heating but laser/sunlight irradiation. In particular, we achieve ambient sunlight‐driven photo‐thermochromic smart windows (PTCSWs) prototype which can automatically become opaque to block sunlight on scorching days and return to a transparent state under low lighting condition. We believe that this work will pave a way for a novel class of smart windows which is highly expected to be integrated into building components to tailor specific camouflage coating and substantially save energy.
Therapeutic cancer vaccines require robust cellular immunity for the efficient killing of tumor cells, and recent advances in neoantigen discovery may provide safe and promising targets for cancer vaccines. However, elicitation of T cells with strong antitumor efficacy requires intricate multistep processes that have been difficult to attain with traditional vaccination approaches. Here, a multifunctional nanovaccine platform has been developed for direct delivery of neoantigens and adjuvants to lymph nodes (LNs) and highly efficient induction of neoantigen-specific T cell responses. A PEGylated reduced graphene oxide nanosheet (RGO-PEG, 20−30 nm in diameter) is a highly modular and biodegradable platform for facile preparation of neoantigen vaccines within 2 h. RGO-PEG exhibits rapid, efficient (15−20% ID/g), and sustained (up to 72 h) accumulation in LNs, achieving >100-fold improvement in LN-targeted delivery, compared with soluble vaccines. Moreover, RGO-PEG induces intracellular reactive oxygen species in dendritic cells, guiding antigen processing and presentation to T cells. Importantly, a single injection of RGO-PEG vaccine elicits potent neoantigen-specific T cell responses lasting up to 30 days and eradicates established MC-38 colon carcinoma. Further combination with anti-PD-1 therapy achieved great therapeutic improvements against B16F10 melanoma. RGO-PEG may serve a powerful delivery platform for personalized cancer vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.