In this study, the expression of Cripto-1 and the role of macrophage polarization in immune response after allogeneic transfusion were analyzed by constructing a mouse model of allogeneic transfusion. In order to analyze the effects of miR-449a on the PI3K/AKT/NF-κB signaling pathway and the expression of downstream related regulatory factors under normal and abnormal conditions, we adopt in vitro and in vivo experiments separately. The molecular mechanism of PI3K/AKT/NF-κB signaling pathway was analyzed by blocking or activating gene expression and western blotting. Experiment in vitro has confirmed that inhibition of miR-449a increased the protein expression of Cripto-1. In vivo experiments confirmed that allogeneic transfusion reduced the expression of Cripto-1, which further inhibited NF-κB signaling pathway through AKT/PI3K phosphorylation, regulated macrophage polarization, inhibited M1 polarization of macrophages, promoted M2 polarization, and thus affected immune response of the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.