In this article, a new approach is proposed to investigate adsorption kinetics and transport of gases in shale. Due to co‐existence of pores with different size in the shale, a set of adsorption processes happened in pores of different sizes are considered. A first‐order multi‐process model is developed, which can perfectly fit the adsorption kinetic data of CH4 and CO2 obtained at different temperatures. The modeling and pore characterization results indicate that an adsorption process happens in micropores/mesopores (<50 nm) and another adsorption process happens in macropores (>50 nm) in the Wufeng shale. Gas diffusion mechanism is dominant in micropores/mesopores, and gas seepage mechanism is dominant in macropores. The effective diffusivity of CO2 is smaller than that of CH4, because the adsorption of large amount of CO2 in the pores hinders its diffusion. The coefficients related to the diffusion and seepage have no obvious trend with temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.