Novelty detection is a task of machine learning that aims at detecting novel events without a prior knowledge. In particular, its techniques can be applied to detect unexpected signals from new phenomena at colliders. In this paper, we develop an analysis scheme that exploits the complementarity, originally studied in ref. [1], between isolation-based and clustering-based novelty evaluators. This approach can significantly improve the performance and overall applicability of novelty detection at colliders, which we demonstrate using a variety of two dimensional Gaussian samples mimicking collider events. As a further proof of principle, we subsequently apply this scheme to the detection of two significantly different signals at the LHC featuring a $$ t\overline{t}\gamma \gamma $$
t
t
¯
γγ
final state: $$ t\overline{t}h $$
t
t
¯
h
, giving a narrow resonance in the diphoton mass spectrum, and gravity-mediated supersymmetry, resulting in broad distributions at high transverse momentum. Compared to existing dedicated searches at the LHC, the sensitivities for detecting both signals are found to be encouraging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.