Aiming at the problems of high complexity and low detection accuracy of single-stage three-dimensional (3D) detection method, a vehicle object detection algorithm based on the Efficient Channel Attention (ECA) mechanism is proposed. This paper provides a good solution to the problems of low object recognition accuracy and high model complexity in the field of 3D object detection. First, we voxelized the original point cloud data, taking the average coordinates and intensity values as the initial features. By entering into the Voxel Feature Encoding (VFE) layer, we can extract the features of each voxel. Then, referring to the VoxelNet model, the ECA mechanism is introduced, which reduces the complexity of the model while maintaining the good performance in the model. Finally, experiments on the widely used KITTI dataset show that the algorithm performs well, and the accuracy of the proposed ECA algorithm has reached 87.75%. Compared with the current mainstream algorithm SE-SSD of object detection, the accuracy is increased by 0.21%.
In recent years, federated GBDTs have gradually replaced traditional GBDTs, and become the focus of academic research. They are used to solve the task of structured data mining. Aiming at the problems of information leakage, insufficient model accuracy and high communication cost in the existing schemes of horizontal federated GBDTs, this paper proposes an algorithm of gradient boosting decision trees based on horizontal federated learning, that is, secure and efficient FL for GBDTs (SeFB). The algorithm uses locality sensitive hashing (LSH) to build a tree by collecting similar information of instances without exposing the original data of participants. In the stage of updating the tree, the algorithm aggregates the local gradients of all data participants and calculates the global leaf weights, so as to improve the accuracy of the model and reduce the communication cost. Finally, the experimental analysis shows that the algorithm can protect the privacy of the original data, and the communication cost is low. At the same time, the performance of the unbalanced binary data set is evaluated. The results show that SeFB algorithm compared with the existing schemes of horizontal federated GBDTs, the accuracy is improved by 2.53% on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.