The Zermatt-Saas serpentinite complex is an integral member of the Penninic ophiolites of the Central Alps and represents the mantle part of the oceanic lithosphere of the Tethys. Metamorphic textures of the serpentinite preserve the complex mineralogical evolution from primary abyssal peridotite through ocean-floor hydration, subduction-related high-pressure overprint, meso-Alpine greenschist facies metamorphism, and late-stage hydrothermal alteration. The early ocean floor hydration of the spinel harzburgites is still visible in relic pseudomorphic bastite and locally preserved mesh textures. The primary serpentine minerals were completely replaced by antigorite. The stable assemblage in subduction-related mylonitic serpentinites is antigorite-olivine-magnetite ± diopside. The mid-Tertiary greenschist facies overprint is characterized by minor antigorite recrystallization. Textural and mineral composition data of this study prove that the hydrated mineral assemblages remained stable during high-pressure metamorphism of up to 2.5 GPa and 650°C. The Zermatt-Saas serpentinites thus provide a well documented example for the lack of dehydration of a mantle fragment during subduction to 75 km depth.
This study reports a new rodingite type which was derived from eclogite enclosed in the ultramafic rocks of Changawuzi ophiolites, western Tianshan, China. Based on petrographical investigations, rodingite, partial rodingitized rock and completely rodingitized rock are characterized in this paper. These rocks show a continuous variation in their bulk compositions, mineralogy and their textural properties from eclogite to rodingite. The completely rodingitized rocks can be further divided into prehnite rodingites, hydrogrossular-diopside rodingite and vesuvianite rodingites on the basis of the mineral assemblage and textural character. The chemical potential path of l(SiO 2 )-l(CaO/MgO) can be used to constrain the evolution of two stages of rodingitization. The first rodingitization possibly started under conditions of 410-430°C and 7-9 kbar at upper greenschist facies, and resulted from a secondary serpentinization during exhumation of the subducted slab. A second and pervasive rodingitization took place under conditions of 250-350°C and 2-10 kbar from greenschist to subgreenschist facies. The P-T path presented shows a retrograde evolution from eclogite to rodingite. We conclude that the process of rodingitization may also take place under subduction zone conditions in addition to its more common occurrence under ocean-floor metamorphic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.