With the rapid development of subway systems, the negative environmental impacts of vibration induced by subways has gradually become a research hotspot. For the purpose of developing predictive models of vibration and designing effective vibration mitigation systems, continuous field dynamic measurements were conducted simultaneously in a subway tunnel, ground, and building in eastern China, the most prosperous region in China. The characteristics of vibration transmission and attenuation induced by subway were analyzed by statistical analysis of large amounts of measurement data. The results showed that most prominent and visible attenuation of vibration is from the track to the ballast bed in the tunnel, where the ground-borne vibration would quickly decrease exponentially with distance. The results also showed that the measured attenuation value of indoor vibration was approximate 0.76 dB on average between each floor. Moreover, the decay ratio of the vibration increased with the increase in the frequency range. Based on these findings, construction gauge of 20-25 m outside of the tunnel is recommended. In addition, reducing the vibration source excitation intensity is the most effective vibration isolation method, especially by track structural transformation. Sustainability 2019, 11, 6835 2 of 12The subway vibration effect on the surrounding environment is not only related to the tunnel structure, stratigraphic characteristics, and building structure, but also to the track and train [9]. Therefore, unlike vibration induced by other sources, such as airplanes, ground traffic or industrial machinery, vibration induced by subway has certain distinctive characteristics, such as low frequency, persistence, and longevity. Thus, more theoretic analysis and field measurements of the vibration induced by subway are also needed to determine causes, characteristics, and its effects.Among the various research methods, the numerical simulation is widely used to predict the environmental influence of vibration induced by subway [10]. Unfortunately, all the simplifying assumptions used in numerical models of ground vibration induced by subway could result in maximum errors of ±10 dB in predictions [11]. Although field measurement involves a lot of data collection and analysis, it is the most direct and reliable method in studying subway vibration propagation. Field measurement is also the only way of verifying the accuracy of other methods, especially when it comes to locally applicable ones [12][13][14].Although there have been many studies on subway vibration worldwide [8], further field measurement studies, specific to vehicle-track excitation source and vibration propagation, are still required. In this study, in order to ascertain the characteristics of vibration transmission and attenuation induced by subway, and to predict the environmental influence of subway train-induced vibration on ground and inside over-track buildings, the continuous dynamic measurement was conducted simultaneously in the subway tunnel, grou...
This paper aimed to screen the potential species suitable for ecological restoration and slope stability from local natural growing plants in China Loess Plateau under a semiarid climate. As part of the field investigations of local natural growing plants, potential species, which are suitable candidates for ecological restoration and slope stability, were nominated in the hilly-gullied region in the Yan'an area. The results showed that Artemisia spp. is the best candidate to form a stable root-soil composite system to support the loose loess and reinforce the loose soil, particularly suitable as pioneer plant in the initial stage of loess slope ecosystem reconstruction. Field root pull-out test and direct shear test for soil without roots and root-soil composite systems were conducted to analyse the reinforcement effect of Artemisia spp. The results from quantitative analysis of the slope protection effect showed that the slope safety factor could be obviously improved by the growth of Artemisia spp. As the survey, test, stability analysis and case study shown, Artemisia spp. can effectively prevent the occurrence of loess flow slides and shallow landslides, which has extensive application prospect.
The deformation and failure of coal and rock materials is the primary cause of many engineering disasters. How to accurately and effectively monitor and forecast the damage evolution process of coal and rock mass, and form a set of prediction methods and prediction indicators is an urgent engineering problems to be solved in the field of rock mechanics and engineering. As a form of energy dissipation in the deformation process of coal and rock, microseismic (MS) can indirectly reflect the damage of coal and rock. In order to analyze the relationship between the damage degree of coal and rock and time-frequency characteristics of MS, the deformation and fracture process of coal and rock materials under different loading modes was tested. The time-frequency characteristics and generation mechanism of MS were analyzed under different loading stages. Meanwhile, the influences of properties of coal and rock materials on MS signals were studied. Results show that there is an evident mode cutoff point between high-frequency and low-frequency MS signals. The properties of coal and rock, such as the development degree of the original fracture, particle size and dense degree have a decisive influence on the amplitude, frequency, energy and other characteristic parameters of MS signals. The change of MS parameters is closely related to material damage, but has no strong relation with the loading rate. The richness of MS signals before the main fracture depends on the homogeneity of materials. With the increase of damage, the energy release rate increases, which can lead to the widening of MS signals spectrum. The stiffness and natural frequency of specimens decreases correspondingly. Meanwhile, the main reason that the dominant frequency of MS detected by sensors installed on the surface of coal and rock materials is mainly low-frequency is friction loss and the resonance effect. In addition, the spectrum and energy evolution of MS can be used as a characterization method of the damage degree of coal and rock materials. Furthermore, the results can provide important reference for prediction and early warning of some rock engineering disasters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.