Recently, ferroptosis has been revealed as a new form of regulated cell death. Distinct from apoptosis and necrosis, ferroptosis is evoked by iron-dependent lipid peroxidation. Furthermore, the metabolism of iron, lipids, and amino acids plays a significant regulatory role in ferroptosis, which can be reversed by glutathione peroxidase 4 and ferroptosis suppressor protein 1. Ferroptosis is implicated in the onset and development of numerous neurological diseases. Emerging studies have reported that ferroptosis induces and aggravates brain tissue damage following cerebral ischemia, whereas inhibition of ferroptosis dramatically attenuates induced damage. In this review, we have summarized the mechanistic relationship between ferroptosis and cerebral ischemia, including through iron overload, downregulation of glutathione peroxidase 4, and upregulation of lipid peroxidation. Although considerable attention has been paid to the effect of ferroptosis on cerebral ischemic injury, specific mechanisms need to be experimentally confirmed, including how cerebral ischemia induces ferroptosis and how ferroptosis deteriorates cerebral ischemia.
Pyroptosis and necroptosis are closely associated with the mechanism underlying cerebral ischemia-reperfusion (I/R) injury. The combination of astragaloside IV (AST IV) and Panax notoginseng saponins (PNS) has remarkable effects on the alleviation of cerebral I/R damage. However, whether inhibition of pyroptosis and necroptosis is the mechanism underlying the beneficial effects of this drug combination on cerebral I/R injury remains unclear. To explore the effects and mechanisms of drug treatment, middle cerebral artery occlusion was performed to induce I/R injury in rats, which was verified based on neurological deficit score (NDS), infarct volume and H&E staining. Activation of pyroptosis and necroptosis was detected by western blot analysis of associated proteins. The results of the present study demonstrated that treatment with AST IV and PNS, either alone or in combination, significantly reduced the NDS, cerebral infarct volume and cell injury rate in the cerebral cortex of rats. The treatments also improved pathological injury to the cerebral cortex and reduced the levels of proteins associated with pyroptosis and necroptosis. These effects were stronger in the combination drug group compared with groups treated with a single drug alone. The findings of the present study suggested that the combination of AST IV and PNS exhibited stronger neuroprotective effects in I/R injury than either drug alone, and that the underlying mechanism was associated with inhibition of pyroptosis and necroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.