Background: The positive predictive value (PPV) of urinary decoy cells for diagnosing BK polyomavirus associated-nephropathy (BKPyVAN) is low. This study was designed to increase the PPV of urinary decoy cells for diagnosing BKPyVAN in kidney transplant recipients.Methods: A total of 105 urine sediment samples from 105 patients with positive BK viruria and decoy cells were evaluated by automatic double-immunostaining with anti-HGD (a renal tubular marker) antibody + anti-SV40-T antibody or anti-S100P (an urothelial marker) antibody + anti-SV40-T antibody.Results: Of the 105 patients, 76 (72.4%) had both HGD(+)/SV40-T(+) cells and S100P(+)/SV40-T(+) cells (group A), 24 (22.9%) had only S100P(+)/SV40-T(+) cells (group B), and 5 (4.6%) had only S100P(−)/ HGD(−)/SV40-T(+) cells (group C). Seventy patients in group A (92.1%), 3 patients in group B (12.5%), and no patients in group C were diagnosed with BKPyVAN. The area under the ROC curve of predicting BKPyVAN by decoy cells was 0.531 (0.431-0.630), with an optimal cut-off value of 29 (per 10 high power field), a sensitivity of 45.8% (95% CI: 34.0-58.0%), and a specificity of 68.8% (95% CI: 50.0-83.9%).Besides, the area under the ROC curve of predicting BKPyVAN by plasma BKPyV load was 0.735 (95% CI: 0.632-0.822), with an optimal cut-off value of 1,000 copies/mL, a sensitivity of 61.1% (95% CI: 48.9-72.4%) and a specificity of 84.2% (95% CI: 60.4-96.6%). In contrast, the PPV, negative predictive value, sensitivity, and specificity of HGD(+)/SV40-T(+) cells for diagnosing BKPyVAN were 92.1% [95% confidence interval (CI): 83.0-96.7%], 89.7% (95% CI: 71.5-97.3%), 95.9% (95% CI: 87.7-98.9%), and 81.3% (95% CI: 63.0-92.1%) respectively.Conclusions: Double-immunostaining with anti-HGD or anti-S100P and anti-SV40-T antibodies helps to identify the origin of decoy cells and diagnose BKPyVAN.
Background: Studies have shown that plasma donor-derived cell-free DNA (dd-cfDNA) can predict renal allograft antibody-mediated rejection. This study was performed to evaluate the value of urine dd-cfDNA concentration and dd-cfDNA fraction (%) for discriminating BK polyomavirus-associated nephropathy (BKPyVAN) in kidney transplant recipients with urinary BK polyomavirus (BKPyV) infection. Methods: In this retrospective single-center observational study, we enrolled kidney transplant recipients who were diagnosed with urine BKPyV infection between August 2018 and May 2019 at the First Affiliated Hospital of Sun Yat-sen University. Urine dd-cfDNA was measured by using a novel target region capture sequencing methodology. The pathological diagnosis of BKPyVAN was confirmed by anti-SV40-T immunohistochemical staining and classified using the American Society for Transplantation schema. Receiver operating characteristic curve analysis was used to investigate the relations of urine dd-cfDNA and dd-cfDNA% to intrarenal allograft BKPyV infection states. Results: In total, 93 patients were enrolled, including 40 cases of proven BKPyVAN, seven cases of probable BKPyVAN, 23 cases of possible BKPyVAN, and 23 cases of resolving BKPyVAN. Urine dd-cfDNA level in proven BKPyVAN (22.09 ± 21.27 ng/ml) was comparable to that in probable BKPyVAN (15.64 ± 6.73 ng/ml, P = 0.434) but was significantly higher than that in possible BKPyVAN (5.60 ± 3.53 ng/ml) and resolving BKPyVAN (5.30 ± 3.34 ng/ml) (both Ps < 0.05). Urine dd-cfDNA% of proven BKPyVAN (0.71 ± 0.21) was lower than that of probable BKPyVAN (0.91 ± 0.04, P < 0.001), but was significantly higher than that of possible BKPyVAN (0.56 ± 0.30) and resolving Chen et al. Donor-Derived cfDNA in Kidney BKPyVAN BKPyVAN (0.46 ± 0.28) (both Ps < 0.05). For distinguishing biopsy-proven BKPyVAN from biopsy-excluded BKPyVAN, the discrimination capacity of urine dd-cfDNA (AUC: 0.842, 95% CI: 0.735, 0.918) was superior to that of plasma BKPyV DNA load (AUC: 0.660, 95% CI: 0.537, 0.769) with 0.181 (95% CI: 0.043, 0.319) difference between areas under ROC curves (P = 0.010). Conclusion: The elevated urine dd-cfDNA level may help discriminate BKPyVAN in kidney transplant recipients with BKPyV viruria.
Background: There is no effective therapy for BK virus (BKV) nephropathy (BKVN). Cyclosporine A (CsA) has a lower immunosuppressive effect than tacrolimus. In vitro studies have shown that CsA inhibits BKV replication. The present study aimed to evaluate the effectiveness of switching from tacrolimus to low-dose CsA in renal transplant recipients with BKVN. Methods: Twenty-four patients diagnosed with BKVN between January 2015 and December 2016 were included. Tacrolimus was switched to low-dose CsA, and patients were followed for 24 months. Primary end points were BKV clearance in blood and graft. Secondary end points were urine specific gravity, serum creatinine, and graft loss. Results: The viremia in all patients cleared at a mean of 2.7 ± 2.0 months after switching to CsA. Urine specific gravity at 3 months after switching to CsA increased significantly compared with that at diagnosis (P=0.002). The timing and trend of urine specific gravity increase was consistent with the timing and trend of blood and urine viral load decrease. Repeated biopsies at a median of 11.2 months (range: 9.1–12.5 months) after switching to CsA showed that 8 patients (42.1%) were negative for BKV, and 11 patients (58.9%) had a decrease in BKV load (P<0.001). There was no statistical difference in the serum creatinine level between the time of diagnosis and 24 months of CsA therapy (P=0.963). The graft survival rate was 100%. Only two patients (8.3%) suffered from acute rejection. Conclusion: Switching from tacrolimus to low-dose CsA may be an effective therapy for BKVN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.