Seashore paspalum (Paspalum vaginatum) is a halophytic, warm-season grass which is closely related to various grain crops. Gene duplication plays an important role in plant evolution, conferring significant plant adaptation at the genomic level. Here, we identified 2,542 tandem duplicated genes (TDGs) in the P. vaginatum genome and estimated the divergence time of pairs of TDGs based on synonymous substitution rates (Ks). Expression of P. vaginatum TDGs resulted in enrichment in many GO terms and KEGG pathways when compared to four other closely-related species. The GO terms included: “ion transmembrane transporter activity,” “anion transmembrane transporter activity” and “cation transmembrane transport,” and KEGG pathways included “ABC transport.” RNA-seq analysis of TDGs showed tissue-specific expression under salt stress, and we speculated that P. vaginatum leaves became adapted to salt stress in the earlier whole-genome duplication (WGD; ~83.3 million years ago; Ma), whereas the entire P. vaginatum plant acquired a large number of TDGs related to salt stress in the second WGD (~23.3 Ma). These results can be used as a reference resource to accelerate salt-resistance research in other grasses and crops.
The RFID antenna is mainly fabricated by metal coil winding, copper or aluminum etching, plating, printing and so on. In this paper, the comparison of above methods is conducted and the progress of the printing method and water-based conductive ink are emphasized. Water-based conductive inks are environmental-friendly, economic, high applicability, and are widely used in screen printing, gravure, flexible printing, inkjet printing, etc. Although starts late and the technology is not very mature, the RFID antenna prepared by printing method has many advantages, such as low cost, high precision, easy operation, variety of substrates, etc. Thus the printing has great potential applications on the fabrication of RFID antenna. Furthermore, water-based conductive inks used in ink-jet printing RFID antenna will be the first choice of printed RFID antenna.
Thermal spraying is a green solvent-free process with the potential of applying polymer coatings to large components in-house or on-site without the need for prolonged drying. Almost no systematic research has been undertaken on thermally spraying thermoset coatings owing to the complexity and difficulty of managing the curing process. An adequately cured thermoset coating could not be deposited by thermal spraying owing to insufficient cumulative time above the cure temperature. Preheating and post-heating the substrate under a constant heat source were not successful as they led to non-uniform curing, residual stress and the risk of overheating. This study develops and validates a computer model that simulates the deposition of thermoset coatings on metal substrates using thermal spraying and high-energy infrared irradiation. The model uses readily-available commercial software and enables precise control of the coating process to improve energy efficiency and coating quality. Further research showed that evenly cured coatings could be achieved by using variable heat fluxes and controlled utilization of inward conduction from the outer surface layers. Self curing during cooling was significant and may be employed to increase energy efficiency. The thickness of the metal substrate was shown to be an important variable as it acts as a heat sink and, for heavy sections, can substantially increase energy consumption. The results indicate a need for sufficiently accurate process control and provide a suitable methodology for the deposition of thermoset coatings.
Background Fumarate hydratase–deficient renal cell carcinoma (FH-RCC) is a rare highly aggressive subtype of kidney cancer for which the distinct genomic, transcriptomic, and evolutionary relationships between metastatic and primary lesions are still unclear. Methods In this study, whole-exome, RNA-seq, and DNA methylation sequencing were performed on primary-metastatic paired specimens from 19 FH-RCC cases, including 23 primary and 35 matched metastatic lesions. Phylogenetic and clonal evolutionary analyses were used to investigate the evolutionary characteristics of FH-RCC. Transcriptomic analyses, immunohistochemistry, and multiple immunofluorescence experiments were performed to identify the tumor microenvironmental features of metastatic lesions. Results Paired primary and metastatic lesions generally showed similar characteristics of tumor mutation burden, tumor neoantigen burden, microsatellite instability score, CNV burden, and genome instability index. Notably, we identified an FH-mutated founding MRCA (the most recent common ancestor) clone that dominated the early evolutionary trajectories in FH-RCC. Although both primary and metastatic lesions manifested high immunogenicity, metastatic lesions exhibited higher enrichment of T effector cells and immune-related chemokines, together with upregulation of PD-L1, TIGIT, and BTLA. In addition, we found that concurrent NF2 mutation may be associated with bone metastasis and upregulation of cell cycle signature in metastatic lesions. Furthermore, although in FH-RCC metastatic lesions in general shared similar CpG island methylator phenotype with primary lesions, we found metastatic lesions displaying hypomethylated chemokine and immune checkpoints related genomic loci. Conclusions Overall, our study demonstrated the genomic, epigenomic, and transcriptomic features of metastatic lesions in FH-RCC and revealed their early evolutionary trajectory. These results provided multi-omics evidence portraying the progression of FH-RCC.
Soil salinization is a growing issue that limits agriculture globally. Understanding the mechanism underlying salt tolerance in halophytic grasses can provide new insights into engineering plant salinity tolerance in glycophytic plants. Seashore paspalum (Paspalum vaginatum Sw.) is a halophytic turfgrass and genomic model system for salt tolerance research in cereals and other grasses. However, the salt tolerance mechanism of this grass largely unknown. To explore the correlation between Na+ accumulation and salt tolerance in different tissues, we utilized two P. vaginatum accessions that exhibit contrasting tolerance to salinity. To accomplish this, we employed various analytical techniques including ICP-MS-based ion analysis, lipidomic profiling analysis, enzyme assays, and integrated transcriptomic and metabolomic analysis. Under high salinity, salt-tolerant P. vaginatum plants exhibited better growth and Na+ uptake compared to salt-sensitive plants. Salt-tolerant plants accumulated heightened Na+ accumulation in their roots, leading to increased production of root-sourced H2O2, which in turn activated the antioxidant systems. In salt-tolerant plants, metabolome profiling revealed tissue-specific metabolic changes, with increased amino acids, phenolic acids, and polyols in roots, and increased amino acids, flavonoids, and alkaloids in leaves. High salinity induced lipidome adaptation in roots, enhancing lipid metabolism in salt-tolerant plants. Moreover, through integrated analysis, the importance of amino acid metabolism in conferring salt tolerance was highlighted. This study significantly enhances our current understanding of salt-tolerant mechanisms in halophyte grass, thereby offering valuable insights for breeding and genetically engineering salt tolerance in glycophytic plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.