The utilization of luminogens with aggregation-induced emission (AIE) characteristics has recently been developed at a tremendous pace in the area of theranostics, mainly because AIE luminogens (AIEgens) hold various distinct advantages, such as good biocompatibility, excellent fluorescence properties, simple preparation and modification, perfect size of nano-aggregation for enhanced permeability and retention effect, promoted efficiencies of photodynamic and photothermal therapies, efficient photoacoustic imaging, and ready constructions of multimodal imaging and therapy. Significant breakthroughs and developments of theranostics based on AIEgens have been achieved in the past few years, and great progress has been witnessed in many theranostic modalities, indicating that AIEgens remarkably complement conventional theranostic materials and promote the development of theranostics. This review provides theoretical insights into the advantages of AIEgens in theranostics, and systematically summarizes the basic concepts, seminal studies, recent trends and perspectives in theranostics based on AIEgens. We believe that AIEgens would be promising multifunctional theranostic platforms in clinical fields and facilitate significant advancements in this research-active area.
Van der Waals (vdW) heterostructures, artificial stacks of two-dimensional materials, present an exciting platform to explore new physical phenomena and unique applications. An important and increasingly recognized factor limiting the electrical and optical performance of heterostructure samples is the presence of interfacial contamination. In published work reporting various heterostructure fabrication methods, evidence for the cleanliness of samples is often presented as optical and atomic force microscopy images, typically exhibiting a completely flat topography. In this work, we demonstrate that such samples may nonetheless contain a uniformly thin layer of contaminants at the heterostructure interface. As alternatives, we propose two robust visualization methods that are highly sensitive to such residues, based on photoluminescence mapping and on selective solvent diffusion. The detection capability and straightforward implementation of these two imaging techniques make them powerful tools to assess and improve the cleanliness of a wide variety of fabrication techniques for heterostructures comprising any combination of vdW materials.
Plasmonic resonant cavities are capable of confining light at the nanoscale, resulting in both enhanced local electromagnetic fields and lower mode volumes. However, conventional plasmonic resonant cavities possess large Ohmic losses at metal-dielectric interfaces. Plasmonic near-field coupling plays a key role in a design of photonic components based on the resonant cavities because of a possibility to reduce losses.Here, we study the plasmonic near-field coupling in the silver nanorod metamaterials treated as resonant nanostructured optical cavities. Reflectance measurements reveal the existence of multiple resonance modes of the nanorod metamaterials being consistent with our theoretical analysis. Furthermore, our numerical simulations show that the electric field at the longitudinal resonances forms standing waves in the nanocavities due to the near-field coupling between the adjacent nanorods, and a new hybrid mode emerges due to a coupling between nanorods and a gold-film substrate. We demonstrate that this coupling can be controlled by changing a gap between the silver nanorod arrays and gold substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.