Abstract-This paper introduces the concept of Modular Hydraulic Propulsion, in which a modular robot that operates in a fluid environment moves by routing the fluid through itself. The robot's modules represent sections of a hydraulics network. Each module can move fluid between any of its faces. The modules (network sections) can be rearranged into arbitrary topologies. We propose a decentralized motion controller, which does not require modules to communicate, compute, nor store information during run-time. We use 3-D simulations to compare the performance of this controller to that of a centralized controller with full knowledge of the task. We also detail the design and fabrication of six 2-D prototype modules, which float in a water tank. Results of systematic experiments show that the decentralized controller, despite its simplicity, reliably steers modular robots towards a light source. Modular Hydraulic Propulsion could offer new solutions to problems requiring reconfigurable systems to move precisely in 3-D, such as inspection of pipes, vascular systems or other confined spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.