Human-Object Interaction (HOI) detection is a fundamental task for understanding real-world scenes. In this paper, a graph model-based human-object interaction detection algorithm is proposed, which aims to make full use of the visual-spatial features and semantic information of human-object instances in the image, thereby improving the accuracy of interaction detection. Aiming at the characteristics of visual-spatial features and semantic information, we take the visual features of human and object instance boxes as nodes, and the corresponding spatial features of interaction relations as edges to construct an initial dense graph, and adaptively update the graph through the spatial and semantic information of instances. The V-COCO dataset is used to evaluate the algorithm, and the final accuracy is significantly improved, which proves the effectiveness of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.