The density functional calculations are performed to study the electronic structure and stability of Nb 5 SiB 2 (001) surface with different terminations. The calculated cleavage energies along the (001) planes in Nb 5 SiB 2 are 5.015 J • m −2 and 6.593 J • m −2 with the break of Nb-Si and Nb-NbB bonds, respectively. There exists a close correlation between the surface relaxation including surface ripple and the cleavage energy: the larger the cleavage energy, the larger the surface relaxation. Moreover, the surface stability of the Nb 5 SiB 2 (001) with different terminations has been investigated by the chemical potential phase diagram. From a thermodynamics point of view, the four terminations can be stabilized under different conditions. In chemical potential space, NbB (Nb) and Nb (Si) terminations are just stable in a small area, whereas Si (Nb) and Nb (NbB) terminations are stable in a large area (the letters in brackets represent the subsurface atoms).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.