Crime prediction is of great significance to the formulation of policing strategies and the implementation of crime prevention and control. Machine learning is the current mainstream prediction method. However, few studies have systematically compared different machine learning methods for crime prediction. This paper takes the historical data of public property crime from 2015 to 2018 from a section of a large coastal city in the southeast of China as research data to assess the predictive power between several machine learning algorithms. Results based on the historical crime data alone suggest that the LSTM model outperformed KNN, random forest, support vector machine, naive Bayes, and convolutional neural networks. In addition, the built environment data of points of interests (POIs) and urban road network density are input into LSTM model as covariates. It is found that the model with built environment covariates has better prediction effect compared with the original model that is based on historical crime data alone. Therefore, future crime prediction should take advantage of both historical crime data and covariates associated with criminological theories. Not all machine learning algorithms are equally effective in crime prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.