Moiré superlattices in van der Waals (vdW) heterostructures could trap long-lived interlayer excitons. These moiré excitons could form ordered quantum dot arrays, paving the way for unprecedented optoelectronic and quantum information applications. Here, we perform first-principles simulations to shed light on moiré excitons in twisted MoS2/WS2 heterostructures. We provide direct evidence of localized interlayer moiré excitons in vdW heterostructures. The interlayer and intralayer moiré potentials are mapped out based on spatial modulations of energy gaps. Nearly flat valence bands are observed in the heterostructures. The dependence of spatial localization and binding energy of the moiré excitons on the twist angle of the heterostructures is examined. We explore how vertical electric field can be tuned to control the position, polarity, emission energy, and hybridization strength of the moiré excitons. We predict that alternating electric fields could modulate the dipole moments of hybridized moiré excitons and suppress their diffusion in moiré lattices.
Surface-illuminated GeSn p-i-n photodetectors (PDs) with Ge0.964Sn0.036 active layer on Ge substrate were fabricated. Photodetection up to 1.95 μm is achieved with a responsivity of 0.13 A/W. High responsivities of 0.56 and 0.71 A/W were achieved under a reverse bias voltage of 3 V at 1640 and 1790 nm, respectively. A low dark current of 1.08 μA was obtained at a reverse bias of 1 V with a diameter of 150 μm, which corresponds to a current density of 6.1 mA/cm2. This value is among the lowest dark current densities reported among GeSn PDs.
Recent experiments revealed stacking-configuration-independent and ultrafast charge transfer in transition metal dichalcogenides van der Waals (vdW) heterostructures, which is surprising given strong exciton binding energies and large momentum mismatch across the heterojunctions. Previous theories failed to provide a comprehensive physical picture for the charge transfer mechanisms. To address this challenge, we developed a first-principles framework which can capture exciton−phonon interaction in extended systems. We find that excitonic effect does not impede, but actually drives ultrafast charge transfer in vdW heterostructures. The many-body electron−hole interaction affords cooperation among the electrons, which relaxes the constraint on momentum conservation and reduces energy gaps for charge transfer. We uncover a two-step process in exciton dynamics: ultrafast hole transfer followed by much longer relaxation of intermediate "hot" excitons. This work establishes that many-body excitonic effect is crucial to the ultrafast dynamics and provides a basis to understand relevant phenomena in vdW heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.