Surface electromyogram (EMG) is often corrupted by three types of noises, i.e. power line interference (PLI), white Gaussian noise (WGN), and baseline wandering (BW). A novel framework based primarily on empirical mode decomposition (EMD) was developed to reduce all the three noise contaminations from surface EMG. In addition to regular EMD, the ensemble EMD (EEMD) was also examined for surface EMG denoising. The advantages of the EMD based methods were demonstrated by comparing them with the traditional digital filters, using signals derived from our routine electrode array surface EMG recordings. The experimental results demonstrated that the EMD based methods achieved better performance than the conventional digital filters, especially when the signal to noise ratio of the processed signal was low. Among all the examined methods, the EEMD based approach achieved the best surface EMG denoising performance.
Angle-resolved polarization Raman spectroscopy (ARPRS) is widely used to determine the crystal orientations of anisotropic layered materials (ALMs), which is an essential step to study all anisotropic properties of them....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.