Decision trees have favorable properties, including interpretability, high computational efficiency, and the ability to learn from little training data. Learning a decision tree is known to be NP-complete. The researchers have proposed many greedy algorithms such as CART to learn approximate solutions. Inspired by the current popular neural networks, soft trees that support end-to-end training with back-propagation have attracted more and more attention. However, existing soft trees either lose the interpretability due to the continuous relaxation or employ the two-stage method of end-to-end building and then pruning. In this paper, we propose One-Stage Tree to build and prune the decision tree jointly through a bilevel optimization problem. Moreover, we leverage the reparameterization trick and proximal iterations to keep the tree discrete during end-to-end training. As a result, One-Stage Tree reduces the performance gap between training and testing and maintains the advantage of interpretability. Extensive experiments demonstrate that the proposed One-Stage Tree outperforms CART and the existing soft trees on classification and regression tasks.
Based on the significant improvement of model robustness by AT (Adversarial Training), various variants have been proposed to further boost the performance. Well-recognized methods have focused on different components of AT (e.g., designing loss functions and leveraging additional unlabeled data). It is generally accepted that stronger perturbations yield more robust models. However, how to generate stronger perturbations efficiently is still missed. In this paper, we propose an efficient automated attacker called A 2 to boost AT by generating the optimal perturbations on-the-fly during training. A 2 is a parameterized automated attacker to search in the attacker space for the best attacker against the defense model and examples. Extensive experiments across different datasets demonstrate that A 2 generates stronger perturbations with low extra cost and reliably improves the robustness of various AT methods against different attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.