In this study, the aerosol optical properties and vertical distributions in major biomass-burning emission area of northern Indochina were investigated using ground-based remote sensing (i.e., four Sun-sky radiometers and one lidar) during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment conducted during spring 2014. Despite the high spatial variability of the aerosol optical depth (AOD; which at 500 nm ranged from 0.75 to 1.37 depending on the site), the temporal variation of the daily AOD demonstrated a consistent pattern among the observed sites, suggesting the presence of widespread smoke haze over the region. Smoke particles were characterized as small (Ångström exponent at 440-870 nm of 1.72 and fine mode fraction of 0.96), strongly absorbing (single-scattering albedo at 440 nm of 0.88), mixture of black and brown carbon particles (absorption Ångström exponent at 440-870 nm of 1.5) suspended within the planetary boundary layer (PBL). Smoke plumes driven by the PBL dynamics in the mountainous region reached as high as 5 km above sea level; these plumes subsequently spread out by westerly winds over northern Vietnam, southern China, and the neighboring South China Sea. Moreover, the analysis of diurnal variability of aerosol loading and optical properties as well as vertical profile in relation to PBL development, fire intensity, and aerosol mixing showed that various sites exhibited different variability based on meteorological conditions, fuel type, site elevation, and proximity to biomass-burning sources. These local factors influence the aerosol characteristics in the region and distinguish northern Indochina smoke from other biomass-burning regions in the world.
Impact of traditional biomass burning activities on regional air quality is a major environmental concern. Measurement campaigns were performed during post-harvesting activities in the Ba Vi region in Hanoi in May-June of 2015 and 2016. To quantify the source for regional haze the sampling of rice straw burning emissions was performed on fields. Carbonaceous (OC, EC, BrC) fractions, heavy metals, organic and ionic composition, and microstructure were characterized. A set of functionalities (hydroxyl, aliphatic, carbonyl, carboxylate, and nitro groups) revealed a functional marker of pile combustion. Optical, microstructural, and chemical analyses of environmentally-dangerous pollutants from traffic and cooking sources provided characteristics and functional markers of different pollution sources. Chemical features of rice straw burning were identified on the Ba Vi site during the haze episode of 2015, when PM 10 mass approached the high smoke intensity, up to 167 µg m -3 . Small-scale meteorology affected PM 10 , OC and EC, and ion mass in days of highest relative humidity and fogs. In days of highest smoke OC dominated PM 10 mass by up to 42%, the OC/EC ratio approached 20, in line with observations of mainly smoldering emissions across the fields. Spectral features of regional haze smoke demonstrated the absorption of rice straw burning whereas the impact of biogenic, traffic, and cooking sources were significantly lower. Individual particle analyses showed carbonaceous particles internally/externally mixed with inorganic fly ash and dust. Smoke micromarkers revealed the microstructure of regional aerosols representative for Southeast Asia in BB periods. Significantly lower PM 10 mass concentrations and strong difference in aerosol composition before post-harvesting activities suggested that agricultural burning represents a large contribution to air quality degradation in the rural area of Vietnam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.