Recent evidence indicates that hydrogen sulfide (H(2)S) exerts an antiatherogenic effect, but the mechanism is unclear. Formation of macrophage-derived foam cells is a crucial event in the development of atherosclerosis. Thus, we explore the effect of H(2)S on the formation of macrophage-derived foam cells. Incubation of monocyte-derived macrophages with oxidized LDL (oxLDL) alone caused significant increases both in intracellular lipids revealed by Oil-red O staining and in intracellular total cholesterol (TC) and esterified cholesterol (EC) concentrations assessed by high-performance liquid chromatography. Sodium hydrosulfide (NaHS, an H(2)S donor) remarkably abrogated oxLDL-induced intracellular lipid accumulation, and attenuated TC and EC concentrations and EC/TC ratio, whereas dl-propargylglycine (PPG) (a H(2)S-generating enzyme cystathionine gamma lyase inhibitor) exacerbated lipid accumulation and augmented TC and EC concentrations and EC/TC ratio. Incubation of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-oxLDL led to lipoprotein binding and uptake of macrophages, which was blunted by NaHS, but enhanced by PPG. Furthermore, OxLDL markedly induced CD36, scavenger receptor A (SR-A) and acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) expressions in macrophages, which was suppressed by NaHS (50-200 μmol/L). Finally, the down-regulations of TC and EC concentrations as well as CD36 and ACAT-1 expressions by NaHS were suppressed by glibenclamide, a K(ATP) channel blocker, but facilitated by PD98059, an extracellular signal-regulated kinases 1 and 2 (ERK1/2) inhibitor. These results suggested that H(2)S inhibits foam cell formation by down-regulating CD36, SR-A and ACAT1 expressions via the K(ATP)/ERK1/2 pathway in human monocyte-derived macrophages.
Previously we demonstrated that multiple cytokines could be simultaneously detected using an antibody-based protein array system with high sensitivity and specificity from conditioned medium and serum. Here, we created a higher density array system to simultaneously detect 35 cytokines from cell lysates and tissue lysates. This assay combines the advantages of the specificity of enzyme-linked immunosorbent assays (ELISA), sensitivity of enhanced chemiluminescence (ECL), and high-throughput of microspot. In this system, capture antibodies dissolved in methanol were spotted onto polyvinylidene difluoride (PVDF) membranes. The membranes were then incubated with tissue lysates or cell lysates. After removing unbound proteins by extensive washing, the membranes were exposed to horseradish peroxidase (HRP)-conjugated antibody(ies). The signals were visualized with an ECL system. High specificity, sensitivity, and accuracy of this approach were demonstrated. This approach can be used in any general laboratory setting without any sophisticated equipment. It should be feasible to extend this concept to develop a high-throughput protein array system. Combining nitrocellulose membrane-based and PVDF membrane-based approaches, the human cytokine array system can be applied to detect multiple cytokine expression from cell lysate, tissue lysate, serum, plasma, and conditioned medium. Future applications of this new approach include direct protein expression profiling, immunological disease diagnostics, and discovery of new biomarkers.
Controllable protocols towards nanoparticle self-assembly are important for applications of functional nanomaterials. Evaporation is a simple yet effective method to realize a gold nanoparticle ordered self-assembly, but until now, little attention has been paid to viewing the corresponding assembly process. Herein, with the help of dark-field microscopy, we in situ monitored the whole dynamic process of gold nanorod (GNR) assembly as the solvent evaporated. Differently from the previous coffee-ring effect, rod-shaped hydrophilic GNRs, within certain concentrations, spontaneously assembled into a multiple-ring pattern on a hydrophobic substrate via droplet drying. The self-assembly mechanism is consistent with a diffusion-driven kinetics, and the influencing factors, including the GNR surface modification, the colloid concentration, the surface property of the substrate, and the shape of the nanoparticles, were systematically investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.