We describe a new challenge aimed at discovering subword and word units from raw speech. This challenge is the followup to the Zero Resource Speech Challenge 2015. It aims at constructing systems that generalize across languages and adapt to new speakers. The design features and evaluation metrics of the challenge are presented and the results of seventeen models are discussed.Index Terms-zero resource speech technology, subword modeling, acoustic unit discovery, unsupervised term discovery
Before they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than nonnative ones. For example, between 6 to 8 mo and 10 to 12 mo, infants learning American English get better at distinguishing English and [l], as in “rock” vs. “lock,” relative to infants learning Japanese. Influential accounts of this early phonetic learning phenomenon initially proposed that infants group sounds into native vowel- and consonant-like phonetic categories—like and [l] in English—through a statistical clustering mechanism dubbed “distributional learning.” The feasibility of this mechanism for learning phonetic categories has been challenged, however. Here, we demonstrate that a distributional learning algorithm operating on naturalistic speech can predict early phonetic learning, as observed in Japanese and American English infants, suggesting that infants might learn through distributional learning after all. We further show, however, that, contrary to the original distributional learning proposal, our model learns units too brief and too fine-grained acoustically to correspond to phonetic categories. This challenges the influential idea that what infants learn are phonetic categories. More broadly, our work introduces a mechanism-driven approach to the study of early phonetic learning, together with a quantitative modeling framework that can handle realistic input. This allows accounts of early phonetic learning to be linked to concrete, systematic predictions regarding infants’ attunement.
Pinpointing subcellular protein localizations from microscopy images is easy to the trained eye, but challenging to automate. Based on the Human Protein Atlas image collection, we held a competition to identify deep learning solutions to solve this task. Challenges included training on highly imbalanced classes and predicting multiple labels per image. Over 3 months, 2,172 teams participated. Despite convergence on popular networks and training techniques, there was considerable variety among the solutions. Participants applied strategies for modifying neural networks and loss functions, augmenting data and using pretrained networks. The winning models far outperformed our previous effort at multi-label classification of protein localization patterns by ~20%. These models can be used as classifiers to annotate new images, feature extractors to measure pattern similarity or pretrained networks for a wide range of biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.