Heat shock 70kDa proteins (HSP70s) and their cochaperones DNAJs are ubiquitous molecular chaperones, which function as the “HSP70/DNAJ machinery” in a myriad of biological processes. At present, a number of HSP70s have been classified in many species, but studies on DNAJs, especially in insects, are lacking. Here, we first systematically identified and characterized the HSP70 and DNAJ family members in the brown planthopper (BPH), Nilaparvata lugens, a destructive rice pest in Asia. A total of nine HSP70 and 31 DNAJ genes were identified in the BPH genome. Sequence and phylogenetic analyses revealed the high diversity of the NlDNAJ family. Additionally, spatio-temporal expression analysis showed that most NlHSP70 and NlDNAJ genes were highly expressed in the adult stage and gonads. Furthermore, RNA interference (RNAi) revealed that seven NlHSP70s and 10 NlDNAJs play indispensable roles in the nymphal development, oogenesis, and female fertility of N. lugens under physiological growth conditions; in addition, one HSP70 (NlHSP68) was found to be important in the thermal tolerance of eggs. Together, our results in this study shed more light on the biological roles of HSP70/DNAJ in regulating life cycle, coping with environmental stresses, and mediating the interactions within, or between, the two gene families in insects.
Hsp90 (heat shock protein 90) chaperone machinery is considered to be a key regulator of proteostasis under both physiological and stress growth conditions in eukaryotic cells. The high conservation of both the sequence and function of Hsp90 allows for the utilization of various species to explore new phenotypes and mechanisms. In this study, three Hsp90 homologs were identified in the brown planthopper (BPH), Nilaparvata lugens: cytosolic NlHsp90, endoplasmic reticulum (ER) NlGRP94 and mitochondrial NlTRAP1. Sequence analysis and phylogenetic construction showed that these proteins belonged to distinct classes consistent with the predicted localization and suggested an evolutionary relationship between NlTRAP1 and bacterial HtpG (high-temperature protein G). Temporospatial expression analyses showed that NlHsp90 was inducible under heat stress throughout the developmental stage, while NlGRP94 was only induced at the egg stage. All three genes had a significantly high transcript level in the ovary. The RNA interference-mediated knockdown of NlHsp90 its essential role in nymph development and oogenesis under physiological conditions. NlGRP94 was also required during the early developmental stage and played a crucial role in oogenesis, fecundity and late embryogenesis. Notably, we first found that NlHsp90 and NlGRP94 were likely involved in the cuticle structure of female BPH. Together, our research revealed multifunctional roles of Hsp90s in the BPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.