To obtain excellent mechanical properties from large cross-sections of plastic mould steel (SDP1), we conducted multi-directional forging (MDF) to control the microstructure of ingots. To investigate the microstructural evolution of SDP1 steel during MDF, we performed hot forging at 1150 °C using a THP01–500A hydraulic press. The dimensions of the specimens were Φ38 mm × 80 mm. The microstructure of the specimens after forging was observed under a metallographic microscope. Furthermore, the results of the finite element method (FEM) simulations were employed to improve the quality of the forgings. The predicted results agreed well with the experimental ones, indicating that FEM is effective for analysing microstructural evolution during MDF. Thus, MDF for large cross-sections of SDP1 steel (Φ1000 mm × 2200 mm) was simulated. The results showed that the average grain size of SDP1 steel at the core of an ingot after MDF ranged from 40.6 to 43.3 μm. Although this was slightly higher than the grain size of the sample after traditional upsetting and stretching forging (TUSF) (35.7–46.0 μm), the microstructure of the SDP1 steel sample after MDF was more uniform than that after TUSF. Compared with TUSF, MDF not only refines the grain size but also improves the microstructure uniformity of the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.