GDNF signaling through the Ret receptor tyrosine kinase is critical for ureteric bud branching morphogenesis during kidney development, yet few of the downstream genes are currently known. We find that the ETS transcription factors Etv4 and Etv5 are positively regulated by Ret signaling in the ureteric bud tips. Etv4−/−, Etv5+/− mice display either renal agenesis or severe hypodysplasia, while kidney development fails completely in double homozygotes. We identify several genes whose expression in the ureteric bud depends on Etv4 and Etv5, including Cxcr4, Myb, Met, Mmp14. Thus, Etv4 and Etv5 are key components of a gene network downstream of Ret that promotes and controls renal branching morphogenesis.
Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development. The retinaldehyde dehydrogenase 2 (RALDH2) enzyme catalyzes the second oxidative step in RA biosynthesis and its loss of function creates a severe embryonic RA deficiency. Raldh2 ؊/؊ knockout embryos fail to undergo heart looping and have impaired atrial and sinus venosus development. To understand the mechanism(s) producing these changes, we examined the contribution of the second heart field (SHF) to pharyngeal mesoderm, atria, and outflow tract in Raldh2 ؊/؊ embryos. RA deficiency alters SHF gene expression in two ways. First, Raldh2 ؊/؊ embryos exhibited a posterior expansion of anterior markers of the SHF, including Tbx1, Fgf8, and the Mlc1v-nlacZ-24/Fgf10 reporter transgene as well as of Islet1. This occurred at early somite stages, when cardiac defects became irreversible in an avian vitamin A-deficiency model, indicating that endogenous RA is required to restrict the SHF posteriorly. Explant studies showed that this expanded progenitor population cannot differentiate properly. Second, RA up-regulated cardiac Bmp expression levels at the looping stage. The contribution of the SHF to both inflow and outflow poles was perturbed under RA deficiency, creating a disorganization of the heart tube. We also investigated genetic cross-talk between Nkx2.5 and RA signaling by generating double mutant mice. Strikingly, Nkx2.5 deficiency was able to rescue molecular defects in the posterior region of the Raldh2 ؊/؊ mutant heart, in a gene dosage-dependent manner.retinoids ͉ retinaldehyde dehydrogenase 2 ͉ heart development ͉ Nkx2.5 ͉ FGF8
SUMMARY
While the genetic control of renal branching morphogenesis has been extensively described, the cellular basis of this process remains obscure. GDNF/Ret signaling is required for ureter and kidney development, and cells lacking Ret are excluded from the tips of the branching ureteric bud in chimeric kidneys. Here, we find that this exclusion results from earlier, Ret-dependent cell rearrangements in the caudal Wolffian duct, which generate a specialized epithelial domain that later emerges as the tip of the primary ureteric bud. By juxtaposing cells with elevated or reduced Ret activity, we find that Wolffian duct cells compete, based on Ret signaling levels, to contribute to this domain. At the same time, the caudal Wolffian duct transiently converts from a simple to a pseudostratified epithelium, a process that does not require Ret. Thus, both Ret-dependent cell movements and Ret-independent changes in the Wolffian duct epithelium contribute to ureteric bud formation.
Metanephric kidney induction critically depends on mesenchymal–epithelial interactions in the caudal region of the nephric (or Wolffian) duct. Central to this process, GDNF secreted from the metanephric mesenchyme induces ureter budding by activating the Ret receptor expressed in the nephric duct epithelium. A failure to regulate this pathway is believed to be responsible for a large proportion of the developmental anomalies affecting the urogenital system. Here, we show that the nephric duct-specific inactivation of the transcription factor gene Gata3 leads to massive ectopic ureter budding. This results in a spectrum of urogenital malformations including kidney adysplasia, duplex systems, and hydroureter, as well as vas deferens hyperplasia and uterine agenesis. The variability of developmental defects is reminiscent of the congenital anomalies of the kidney and urinary tract (CAKUT) observed in human. We show that Gata3 inactivation causes premature nephric duct cell differentiation and loss of Ret receptor gene expression. These changes ultimately affect nephric duct epithelium homeostasis, leading to ectopic budding of interspersed cells still expressing the Ret receptor. Importantly, the formation of these ectopic buds requires both GDNF/Ret and Fgf signaling activities. We further identify Gata3 as a central mediator of β-catenin function in the nephric duct and demonstrate that the β-catenin/Gata3 pathway prevents premature cell differentiation independently of its role in regulating Ret expression. Together, these results establish a genetic cascade in which Gata3 acts downstream of β-catenin, but upstream of Ret, to prevent ectopic ureter budding and premature cell differentiation in the nephric duct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.