a b s t r a c tThis study focuses on the identification of concrete behavior under severe triaxial loading in order to better evaluate the vulnerability of sensitive infrastructure to near-field detonations or ballistic impacts. For the purpose of reproducing high stress levels with well-controlled loading paths, static tests have been conducted on concrete samples using a triaxial press offering very high capacities (stress levels of around 1 GPa). It is a well-known fact that the concrete drying process is a slow phenomenon. Massive concrete structures, such as bridge piers, dams and nuclear reactors, could retain a quasi-saturated core throughout most of their lifetime, even though their facing dries very quickly. The objective of this article is to evaluate the effect of the saturation ratio on concrete behavior under high confinement; this article will present triaxial test results on concrete samples over a saturation ratio range extending from dried to quasi-saturated concretes. The subsequent analysis of results will show that the saturation ratio exerts a major influence on concrete behavior, particularly on both the concrete strength capacity and shape of the limit state curve for saturation ratios above 50%. This analysis also highlights that while the strength of dried concrete strongly increases with confining pressure, it remains constant over a given confining pressure range for either wet or saturated samples.
SUMMARYThis study focuses on identifying concrete behavior under severe triaxial loadings (near field detonation or ballistic impacts). In order to reproduce high stress levels with well-controlled loading paths, static tests have been carried out on concrete samples by mean of a very high-capacity triaxial press (stress levels on the order of 1 GPa). It is a longstanding fact that the water/cement ratio (W/C), upon entering the concrete composition, is a major parameter affecting the porosity and strength of the cement matrix of hardened concrete. The objective of this article is to quantify the effect of this ratio on concrete behavior under conditions of high confinement. From the composition of a reference 'ordinary' concrete (i.e. W/C = 0.6), two other concretes have been produced with W/C ratios equal to 0.4 and 0.8, respectively. This article presents experimental results and their analysis regarding the effect of water/cement ratio (W/C) on concrete behavior under high confinement. It shows that when placed under high confinement, concrete behaves like a granular stacking composed of concrete without any influence from the level of cement matrix strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.