Existing video streaming algorithms use various estimation approaches to infer the inherently variable bandwidth in cellular networks, which often leads to reduced quality of experience (QoE). We ask the question: "If accurate bandwidth prediction were possible in a cellular network, how much can we improve video QoE?". Assuming we know the bandwidth for the entire video session, we show that existing streaming algorithms only achieve between 69%-86% of optimal quality. Since such knowledge may be impractical, we study algorithms that know the available bandwidth for a few seconds into the future. We observe that prediction alone is not sufficient and can in fact lead to degraded QoE. However, when combined with rate stabilization functions, prediction outperforms existing algorithms and reduces the gap with optimal to 4%. Our results lead us to believe that cellular operators and content providers can tremendously improve video QoE by predicting available bandwidth and sharing it through APIs.
No abstract
Modern networks run "middleboxes" that offer services ranging from network address translation and server load balancing to firewalls, encryption, and compression. In an industry trend known as Network Functions Virtualization (NFV), these middleboxes run as virtual machines on any commodity server, and the switches steer traffic through the relevant chain of services. Network administrators must decide how many middleboxes to run, where to place them, and how to direct traffic through them, based on the traffic load and the server and network capacity. Rather than placing specific kinds of middleboxes on each processing node, we argue that server virtualization allows each server node to host all middlebox functions, and simply vary the fraction of resources devoted to each one. This extra flexibility fundamentally changes the optimization problem the network administrators must solve to a new kind of multi-commodity flow problem, where the traffic flows consume bandwidth on the links as well as processing resources on the nodes. We show that allocating resources to maximize the processed flow can be optimized exactly via a linear programming formulation, and to arbitrary accuracy via an efficient combinatorial algorithm. Our experiments with real traffic and topologies show that a joint optimization of node and link resources leads to an efficient use of bandwidth and processing capacity. We also study a class of design problems that decide where to provide node capacity to best process and route a given set of demands, and demonstrate both approximation algorithms and hardness results for these problems.
Software Defined Networking (SDN) provides opportunities for network verification and debugging by offering centralized visibility of the data plane. This has enabled both offline and online data-plane verification. However, little work has gone into the verification of time-varying properties (e.g., dynamic access control), where verification conditions change dynamically in response to application logic, network events, and external stimulus (e.g., operator requests).This paper introduces an assertion language to support verifying and debugging SDN applications with dynamically changing verification conditions. The language allows programmers to annotate controller applications with C-style assertions about the data plane. Assertions consist of regular expressions on paths to describe path properties for classes of packets, and universal and existential quantifiers that range over programmer-defined sets of hosts, switches, or other network entities. As controller programs dynamically add and remove elements from these sets, they generate new verification conditions that the existing data plane must satisfy. This work proposes an incremental data structure together with an underlying verification engine, to avoid naively re-verifying the entire data plane as these verification conditions change. To validate our ideas, we have implemented a debugging library on top of a modified version of VeriFlow, which is easily integrated into existing controller systems with minimal changes. Using this library, we have verified correctness properties for applications on several controller platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.