The development of stimuli‐responsive soft actuators, a task largely undertaken by material scientists, has become a major driving force in pushing the frontiers of microrobotics. Devices made of soft active materials are oftentimes small in size, remotely and wirelessly powered/controlled, and capable of adapting themselves to unexpected hurdles. However, nowadays most soft microscale robots are rather simple in terms of design and architecture, and it remains a challenge to create complex 3D soft robots with stimuli‐responsive properties. Here, it is suggested that kirigami‐based techniques can be useful for fabricating complex 3D robotic structures that can be activated with light. External stress fields introduce out‐of‐plane deformation of kirigami film actuators made of liquid crystal networks. Such 2D‐to‐3D structural transformations can give rise to mechanical actuation upon light illumination, thus allowing the realization of kirigami‐based light‐fuelled robotics. A kirigami rolling robot is demonstrated, where a light beam controls the multigait motion and steers the moving direction in 2D. The device is able to navigate along different routes and moves up a ramp with a slope of 6°. The results demonstrate a facile technique to realize complex and flexible 3D structures with light‐activated robotic functions.
Kirigami, a technique that transforms 2D sheets into complex designable 3D sculptures, is often used in paper art. In article number 1906233, Yu‐Chieh Cheng, Hao Zeng, and co‐workers implement kirigami in light‐responsive thin‐film liquid‐crystal network actuators. A versatile 3D shape‐shifting and multigait rolling robot capable of light‐steered 2D motion is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.