Soybean is one of the world’s most consumed crops. As the human population continuously increases, new phenotyping technology is needed to develop new soybean varieties with high-yield, stress-tolerant, and disease-tolerant traits. Hyperspectral imaging (HSI) is one of the most used technologies for phenotyping. The current HSI techniques with indoor imaging towers and unmanned aerial vehicles (UAVs) suffer from multiple major noise sources, such as changes in ambient lighting conditions, leaf slopes, and environmental conditions. To reduce the noise, a portable single-leaf high-resolution HSI imager named LeafSpec was developed. However, the original design does not work efficiently for the size and shape of dicot leaves, such as soybean leaves. In addition, there is a potential to make the dicot leaf scanning much faster and easier by automating the manual scan effort in the original design. Therefore, a renovated design of a LeafSpec with increased efficiency and imaging quality for dicot leaves is presented in this paper. The new design collects an image of a dicot leaf within 20 s. The data quality of this new device is validated by detecting the effect of nitrogen treatment on soybean plants. The improved spatial resolution allows users to utilize the Normalized Difference Vegetative Index (NDVI) spatial distribution heatmap of the entire leaf to predict the nitrogen content of a soybean plant. This preliminary NDVI distribution analysis result shows a strong correlation (R2 = 0.871) between the image collected by the device and the nitrogen content measured by a commercial laboratory. Therefore, it is concluded that the new LeafSpec-Dicot device can provide high-quality hyperspectral leaf images with high spatial resolution, high spectral resolution, and increased throughput for more accurate phenotyping. This enables phenotyping researchers to develop novel HSI image processing algorithms to utilize both spatial and spectral information to reveal more signals in soybean leaf images.
Image-based spectroscopy phenotyping is a rapidly growing field that investigates how genotype, environment and management interact using remote or proximal sensing systems to capture images of a plant under multiple wavelengths of light. While remote sensing techniques have proven effective in crop phenotyping, they can be subject to various noise sources, such as varying lighting conditions and plant physiological status, including leaf orientation. Moreover, current proximal leaf-scale imaging devices require the sensors to accommodate the state of the samples during imaging which induced extra time and labor cost. Therefore, this study developed a proximal multispectral imaging device that can actively attract the leaf to the sensing area (target-to-sensor mode) for high-precision and high-throughput leaf-scale phenotyping. To increase the throughput and to optimize imaging results, this device innovatively uses active airflow to reposition and flatten the soybean leaf. This novel mechanism redefines the traditional sensor-to-target mode and has relieved the device operator from the labor of capturing and holding the leaf, resulting in a five-fold increase in imaging speed compared to conventional proximal whole leaf imaging device. Besides, this device uses artificial lights to create stable and consistent lighting conditions to further improve the quality of the images. Furthermore, the touch-based imaging device takes full advantage of proximal sensing by providing ultra-high spatial resolution and quality of each pixel by blocking the noises induced by ambient lighting variances. The images captured by this device have been tested in the field and proven effective. Specifically, it has successfully identified nitrogen deficiency treatment at an earlier stage than a typical remote sensing system. The p-value of the data collected by the device (p = 0.008) is significantly lower than that of a remote sensing system (p = 0.239).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.