Terahertz time-domain spectroscopy (THz-TDS) systems based on ultra-high repetition rate mode-locked laser diodes (MLLDs) and semiconductor photomixers show great potential in terms of a wide bandwidth, fast acquisition speed, compactness, and robustness. They come at a much lower total cost than systems using femtosecond fiber lasers. However, to date, there is no adequate mathematical description of THz-TDS using a MLLD. In this paper, we provide a simple formula based on a system-theoretical model that accurately describes the detected terahertz spectrum as a function of the optical amplitude and phase spectrum of the MLLD and the transfer function of the terahertz system. Furthermore, we give a simple yet exact relationship between the optical intensity autocorrelation and the detected terahertz spectrum. We theoretically analyze these results for typical optical spectra of MLLDs to quantify the effect of pulse chirp on the terahertz spectrum. Finally, we confirm the validity of the model with comprehensive experimental results using a single-section and a two-section MLLD in a conventional THz-TDS system.
In this paper, we present a new setup for the measurement of element-specific ultrafast magnetization dynamics in ferromagnetic thin films with a sub-15-fs time resolution. Our experiment relies on a split and delay approach which allows us to fully exploit the shortest X-rays pulses delivered by X-ray Free Electrons Lasers (close to the attosecond range), in an X-ray pump – X-ray probe geometry. The setup performance is demonstrated by measuring the ultrafast elemental response of Ni and Fe during demagnetization of ferromagnetic Ni and Ni80Fe20 (Permalloy) samples upon resonant excitation at the corresponding absorption edges. The transient demagnetization process is measured in both reflection and transmission geometry using, respectively, the transverse magneto-optical Kerr effect (T-MOKE) and the Faraday effect as probing mechanisms.
Coherent terahertz control of magnetization dynamics is an area of current interest due to its great potential for the realization of magnetization control on ultrafast timescales in commercial devices. Here we report on an experiment realized at the THz beamline of the free electron laser FLASH at DESY which offers a tunable terahertz radiation source and spontaneously synchronized free-electron laser X-ray pulses to resonantly probe the magnetization state of a ferromagnetic film. In this proof-of-principle experiment, we have excited a thin Permalloy film at different THz wavelengths and recorded the induced magnetization dynamics with photons resonantly tuned to the Ni M2,3 absorption edge. For THz pump pulses including higher orders of the undulator source we observed demagnetization dynamics, which precise shape depended on the employed fundamental wavelength of the undulator source. Analyzing the shape in detail, we can reconstruct the temporal profile of the electric field of the THz pump pulse. This offers a new method for the realization of an in-situ terahertz beamline diagnostic which will help researchers to adjust the pulse characteristics as needed, for example, for future studies of THz induced coherent control of magnetization dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.