Multiphase pathological processes involve in Type 2 diabetes (T2DM)‐induced nonalcoholic fatty liver disease (NAFLD). However, the therapies are quite limited. In the present study, the hepatoprotective effects and underlying mechanisms of quercetin in T2DM‐induced NAFLD were investigated. T2DM‐induced NAFLD and quercetin treatment models were established in vivo and in vitro. The results revealed that quercetin alleviated serum transaminase levels and markedly reduced T2DM‐induced histological alterations of livers. Additionally, quercetin restored superoxide dismutase, catalase, and glutathione content in livers. Not only that, quercetin markedly attenuated T2DM‐induced production of interleukin 1 beta, interleukin 6, and TNF‐α. Accompanied by the restoration of the increased serum total bile acid (p = .0001) and the decreased liver total bile acid (p = .0005), quercetin could reduce lipid accumulation in the liver of db/db mice. Further mechanism studies showed that farnesoid X receptor 1/Takeda G‐protein‐coupled receptor 5 signaling pathways was involved in quercetin regulation of lipid metabolism in T2DM‐induced NAFLD. In high D‐glucose and free fatty acid cocultured HepG2 cells model, quercetin eliminated lipid droplets and restored the upregulated total cholesterol and triglyceride levels. Similar to the findings in mice, quercetin could also activate farnesoid X receptor 1/Takeda G‐protein‐coupled receptor 5 signaling pathway. These findings suggested that quercetin might be a potentially effective drug for the treatment of T2DM‐induced NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.