Given many recent advanced embedding models, selecting pre-trained word embedding (a.k.a., word representation) models best fit for a specific downstream task is non-trivial. In this paper, we propose a systematic approach, called ETNLP, for extracting, evaluating, and visualizing multiple sets of pre-trained word embeddings to determine which embeddings should be used in a downstream task.We demonstrate the effectiveness of the proposed approach on our pre-trained word embedding models in Vietnamese to select which models are suitable for a named entity recognition (NER) task. Specifically, we create a large Vietnamese word analogy list to evaluate and select the pre-trained embedding models for the task. We then utilize the selected embeddings for the NER task and achieve the new state-of-the-art results on the task benchmark dataset. We also apply the approach to another downstream task of privacy-guaranteed embedding selection, and show that it helps users quickly select the most suitable embeddings. In addition, we create an open-source system using the proposed systematic approach to facilitate similar studies on other NLP tasks. The source code and data are available at https: //github.com/vietnlp/etnlp.
Increasing attention to the research on activity monitoring in smart homes has motivated the employment of ambient intelligence to reduce the deployment cost and solve the privacy issue. Several approaches have been proposed for multi-resident activity recognition, however, there still lacks a comprehensive benchmark for future research and practical selection of models. In this paper we study different methods for multi-resident activity recognition and evaluate them on same sets of data. The experimental results show that recurrent neural network with gated recurrent units is better than other models and also considerably efficient, and that using combined activities as single labels is more effective than represent them as separate labels.
With the recent advances in graph neural networks, there is a rising number of studies on graph-based multi-label classification with the consideration of object dependencies within visual data. Nevertheless, graph representations can become indistinguishable due to the complex nature of label relationships. We propose a multi-label image classification framework based on graph transformer networks to fully exploit inter-label interactions. The paper presents a modular learning scheme to enhance the classification performance by segregating the computational graph into multiple sub-graphs based on modularity. The proposed approach, named Modular Graph Transformer Networks (MGTN), is capable of employing multiple backbones for better information propagation over different sub-graphs guided by graph transformers and convolutions. We validate our framework on MS-COCO and Fashion550K datasets to demonstrate improvements for multi-label image classification. The source code is available at https://github.com/ReML-AI/MGTN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.