Apigenin is a plant-derived flavonoid and has been reported to prevent bone loss in ovariectomized mice, but the role of apigenin on osteogenic differentiation of human mesenchymal stem cells (hMSCs) has not been reported. In the present study, the effect of apigenin on osteogenic differentiation of hMSCs was explored. Our results showed that apigenin treatment significantly increased alkaline phosphatase (ALP) activity and mineralization in hMSCs. RT-PCR revealed that apigenin markedly up-regulated the mRNA expression of osteopontin (OPN) and the transcription factors runt-related transcription factor 2 (Runx2). The expression of Runx2 and osterix (OSX) proteins were also increased in hMSCs differentiating into osteoblasts after treatment with apigenin. Furthermore, we investigated the signaling pathways responsible for osteogenic differentiation of apigenin in hMSCs. We found that apigenin treatment significantly increased the levels of p-JNK, p-p38 in hMSCs and addition of the inhibitors of JNK (SP600125) or p38 MAPK (SB203580) eliminated the stimulating effects of apigenin. In addition, addition of SP600125 or SB203580 also blocked apigenin-induced ALP activity, OPN, Runx2, and OSX expression and meanwhile inhibited bone nodule formation. Taken together, these findings suggest apigenin promotes the osteogenesis of hMSCs through activation of JNK and p38 MAPK signal pathways which leads to Runx2 and OSX expressions to induce the formation of bone nodule.
Amentoflavone is a bioflavonoid found in a variety of traditional Chinese medicines such as Gingko and Selaginella tamariscina. It has been reported that amentoflavone has anti-inflammatory, antioxidant, antiviral and anticancer effects. However, the effect of amentoflavone on osteogenic differentiation of human mesenchymal stem cells (hMSCs) has not been studied. In this study, we aim to explore the effect of amentoflavone on the proliferation and osteogenic differentiation of hMSCs. The results showed that amentoflavone significantly enhanced the proliferation, alkaline phosphatase (ALP) activity and mineralization in hMSCs. Western blot analysis revealed that the expression of runt-related transcription factor 2 and osterix proteins was upregulated in amentoflavone-treated hMSCs. Furthermore, we investigated the possible signaling pathways responsible for osteogenic differentiation of hMSCs by amentoflavone. We found that amentoflavone significantly increased the levels of phosphorylated JNK and p-p38. The amentoflavone-induced increases of ALP and mineralization were significantly diminished when the JNK and p38 MAPK pathways were blocked by selected inhibitors (SP600125, SB203580) in hMSCs. Furthermore, in vivo evidence indicated that amentoflavone protected against the dexamethasone-induced inhibition of osteoblast differentiation in tg(sp7:egfp) zebrafish larvae. Thus, we showed for the first time that amentoflavone improves the osteogenesis of hMSCs through the JNK and p38 MAPK pathway. Amentoflavone may be beneficial in treating bone-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.